Alejandro Agostini
Spanish National Research Council
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Alejandro Agostini.
Robotics and Autonomous Systems | 2011
Norbert Krüger; Christopher W. Geib; Justus H. Piater; Ronald P. A. Petrick; Mark Steedman; Florentin Wörgötter; Ales Ude; Tamim Asfour; Dirk Kraft; Damir Omrcen; Alejandro Agostini; Rüdiger Dillmann
Abstract This paper formalises Object–Action Complexes (OACs) as a basis for symbolic representations of sensory–motor experience and behaviours. OACs are designed to capture the interaction between objects and associated actions in artificial cognitive systems. This paper gives a formal definition of OACs, provides examples of their use for autonomous cognitive robots, and enumerates a number of critical learning problems in terms of OACs.
Robotics and Autonomous Systems | 2009
Florentin Wörgötter; Alejandro Agostini; Norbert Krüger; Natalya Shylo; Ben Porr
Embodied cognition suggests that complex cognitive traits can only arise when agents have a body situated in the world. The aspects of embodiment and situatedness are being discussed here from the perspective of linear systems theory. This perspective treats bodies as dynamic, temporally variable entities, which can be extended (or curtailed) at their boundaries. We show how acting agents can, for example, actively extend their body for some time by incorporating predictably behaving parts of the world and how this affects the transfer functions. We suggest that primates have mastered this to a large degree increasingly splitting their world into predictable and unpredictable entities. We argue that temporary body extension may have been instrumental in paving the way for the development of higher cognitive complexity as it is reliably widening the cause-effect horizon about the actions of the agent. A first robot experiment is sketched to support these ideas. We continue discussing the concept of Object-Action Complexes (OACs) introduced by the European PACO-PLUS consortium to emphasize the notion that, for a cognitive agent, objects and actions are inseparably intertwined. In another robot experiment we devise a semi-supervised procedure using the OAC-concept to demonstrate how an agent can acquire knowledge about its world. Here the notion of predicting changes fundamentally underlies the implemented procedure and we try to show how this concept can be used to improve the robots inner model and behaviour. Hence, in this article we have tried to show how predictability can be used to augment the agents body and to acquire knowledge about the external world, possibly leading to more advanced cognitive traits.
international joint conference on artificial intelligence | 2011
Alejandro Agostini; Carme Torras; Florentin Wörgötter
Human environments are challenging for robots, which need to be trainable by lay people and learn new behaviours rapidly without disrupting much the ongoing activity. A system that integrates AI techniques for planning and learning is here proposed to satisfy these strong demands. The approach rapidly learns planning operators from few action experiences using a competitive strategy where many alternatives of cause-effect explanations are evaluated in parallel, and the most successful ones are used to generate the operators. The success of a cause-effect explanation is evaluated by a probabilistic estimate that compensates the lack of experience, producing more confident estimations and speeding up the learning in relation to other known estimates. The system operates without task interruption by integrating in the planning-learning loop a human teacher that supports the planner in making decisions. All the mechanisms are integrated and synchronized in the robot using a general decision-making framework. The feasibility and scalability of the architecture are evaluated in two different robot platforms: a Staubli arm, and the humanoid ARMAR III.
international symposium on neural networks | 2010
Alejandro Agostini; Enric Celaya
Recent approaches to Reinforcement Learning (RL) with function approximation include Neural Fitted Q Iteration and the use of Gaussian Processes. They belong to the class of fitted value iteration algorithms, which use a set of support points to fit the value-function in a batch iterative process. These techniques make efficient use of a reduced number of samples by reusing them as needed, and are appropriate for applications where the cost of experiencing a new sample is higher than storing and reusing it, but this is at the expense of increasing the computational effort, since these algorithms are not incremental. On the other hand, non-parametric models for function approximation, like Gaussian Processes, are preferred against parametric ones, due to their greater flexibility. A further advantage of using Gaussian Processes for function approximation is that they allow to quantify the uncertainty of the estimation at each point. In this paper, we propose a new approach for RL in continuous domains based on Probability Density Estimations. Our method combines the best features of the previous methods: it is non-parametric and provides an estimation of the variance of the approximated function at any point of the domain. In addition, our method is simple, incremental, and computationally efficient. All these features make this approach more appealing than Gaussian Processes and fitted value iteration algorithms in general.
Artificial Intelligence | 2017
Alejandro Agostini; Carme Torras; Florentin Wrgtter
The inclusion of robots in our society is imminent, such as service robots. Robots are now capable of reliably manipulating objects in our daily lives but only when combined with artificial intelligence (AI) techniques for planning and decision-making, which allow a machine to determine how a task can be completed successfully. To perform decision making, AI planning methods use a set of planning operators to code the state changes in the environment produced by a robotic action. Given a specific goal, the planner then searches for the best sequence of planning operators, i.e., the best plan that leads through the state space to satisfy the goal. In principle, planning operators can be hand-coded, but this is impractical for applications that involve many possible state transitions. An alternative is to learn them automatically from experience, which is most efficient when there is a human teacher. In this study, we propose a simple and efficient decision-making framework for this purpose. The robot executes its plan in a step-wise manner and any planning impasse produced by missing operators is resolved online by asking a human teacher for the next action to execute. Based on the observed state transitions, this approach rapidly generates the missing operators by evaluating the relevance of several causeeffect alternatives in parallel using a probability estimate, which compensates for the high uncertainty that is inherent when learning from a small number of samples. We evaluated the validity of our approach in simulated and real environments, where it was benchmarked against previous methods. Humans learn in the same incremental manner, so we consider that our approach may be a better alternative to existing learning paradigms, which require offline learning, a significant amount of previous knowledge, or a large number of samples.
Neural Computation | 2015
Enric Celaya; Alejandro Agostini
In the online version of the EM algorithm introduced by Sato and Ishii (2000), a time-dependent discount factor is introduced for forgetting the effect of the old estimated values obtained with an earlier, inaccurate estimator. In their approach, forgetting is uniformly applied to the estimators of each mixture component depending exclusively on time, irrespective of the weight attributed to each unit for the observed sample. This causes an excessive forgetting in the less frequently sampled regions. To address this problem, we propose a modification of the algorithm that involves a weight-dependent forgetting, different for each mixture component, in which old observations are forgotten according to the actual weight of the new samples used to replace older values. A comparison of the time-dependent versus the weight-dependent approach shows that the latter improves the accuracy of the approximation and exhibits much greater stability.
intelligent robots and systems | 2015
Alejandro Agostini; Mohamad Javad Aein; Sandor Szedmak; Eren Erdal Aksoy; Justus H. Piater; Florentin Wörgötter
In this work we address the problem of finding replacements of missing objects that are needed for the execution of human-like manipulation tasks. This is a usual problem that is easily solved by humans provided their natural knowledge to find object substitutions: using a knife as a screwdriver or a book as a cutting board. On the other hand, in robotic applications, objects required in the task should be included in advance in the problem definition. If any of these objects is missing from the scenario, the conventional approach is to manually redefine the problem according to the available objects in the scene. In this work we propose an automatic way of finding object substitutions for the execution of manipulation tasks. The approach uses a logic-based planner to generate a plan from a prototypical problem definition and searches for replacements in the scene when some of the objects involved in the plan are missing. This is done by means of a repository of objects and attributes with roles, which is used to identify the affordances of the unknown objects in the scene. Planning actions are grounded using a novel approach that encodes the semantic structure of manipulation actions. The system was evaluated in a KUKA arm platform for the task of preparing a salad with successful results.
Engineering Applications of Artificial Intelligence | 2014
Alejandro Agostini; Carme Torras; Florentin Wörgötter
We propose a cognitive system that combines artificial intelligence techniques for planning and learning to execute tasks involving delayed and variable correlations between the actions executed and their expected effects. The system is applied to the task of controlling the growth of plants, where the evolution of the plant attributes strongly depends on different events taking place in the temporally distant past history of the plant. The main problem to tackle is how to efficiently detect these past events. This is very challenging since the inclusion of time could make the dimensionality of the search space extremely large and the collected training instances may only provide very limited information about the relevant combinations of events. To address this problem we propose a learning method that progressively identifies those events that are more likely to produce a sequence of changes under a plant treatment. Since the number of experiences is very limited compared to the size of the event space, we use a probabilistic estimate that takes into account the lack of experience to prevent biased estimations. Planning operators are generated from most accurately predicted sequences of changes. Planning and learning are integrated in a decision-making framework that operates without task interruptions by allowing a human gardener to instruct the treatments when the knowledge acquired so far is not enough to make a decision.
intelligent robots and systems | 2004
Alejandro Agostini; Enric Celaya
Real world robot applications have to cope with large variations in the operating conditions due to the variability and unpredictability of the environment and its interaction with the robot. Performing an adequate control using conventional control techniques, that require the model of the plant and some knowledge about the influence of the environment, could be almost impossible. An alternative to traditional control techniques is to use an automatic learning system that uses previous experience to learn an adequate control policy. Learning by experience has been formalized in the field of reinforcement learning. But the application of reinforcement learning techniques in complex environments is only feasible when some generalization can be made in order to reduce the required amount of experience. This work presents an algorithm that performs a kind of generalization called categorization. This algorithm is able to perform efficient generalization of the observed situations, and learn accurate control policies in a short time without any previous knowledge of the plant and without the need of any kind of traditional control technique. Its performance is evaluated on the trajectory tracking control with simulated DC motors and compared with PID systems specifically tuned for the same problem.
Computers and Electronics in Agriculture | 2017
Alejandro Agostini; Guillem Aleny; Andreas Fischbach; Hanno Scharr; Florentin Wrgtter; Carme Torras
A cognitive system to autonomously control the growth of plants is proposed.The system integrates artificial intelligence and robotic techniques.Decisions are made using symbolic planning and machine learning.Plants are modelled using 3D model acquisition of deformable objects (leaves).Action rules are learned during run-time under the guidance of a human gardener. In large industrial greenhouses, plants are usually treated following well established protocols for watering, nutrients, and shading/light. While this is practical for the automation of the process, it does not tap the full potential for optimal plant treatment. To more efficiently grow plants, specific treatments according to the plant individual needs should be applied. Experienced human gardeners are very good at treating plants individually. Unfortunately, hiring a crew of gardeners to carry out this task in large greenhouses is not cost effective. In this work we present a cognitive system that integrates artificial intelligence (AI) techniques for decision-making with robotics techniques for sensing and acting to autonomously treat plants using a real-robot platform. Artificial intelligence techniques are used to decide the amount of water and nutrients each plant needs according to the history of the plant. Robotic techniques for sensing measure plant attributes (e.g. leaves) from visual information using 3D model representations. These attributes are used by the AI system to make decisions about the treatment to apply. Acting techniques execute robot movements to supply the plants with the specified amount of water and nutrients.