Alejandro Aguado
University of Bristol
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Alejandro Aguado.
Journal of Lightwave Technology | 2015
Yuki Yoshida; Akihiro Maruta; Ken-ichi Kitayama; Masato Nishihara; Toshiki Tanaka; Tomoo Takahara; Jens C. Rasmussen; Noboru Yoshikane; Takehiro Tsuritani; Itsuro Morita; Shuangyi Yan; Yi Shu; Yan Yan; Reza Nejabati; Georgios Zervas; Dimitra Simeonidou; Ricard Vilalta; Raul Muñoz; Ramon Casellas; Ricardo Martínez; Alejandro Aguado; Victor Lopez; Jaume Marhuenda
A multidomain and multitechnology optical network orchestration is demonstrated in an international testbed located in Japan, the U.K., and Spain. The application-based network operations architecture is proposed as a carrier software-defined network solution for provisioning end-to-end optical transport services through a multidomain multitechnology network scenario, consisting of a 46-108 Gb/s variable-capacity OpenFlow-capable optical packet switching network and a programmable, flexi-grid elastic optical path network.
Photonic Network Communications | 2014
Lluis Gifre; Francesco Paolucci; Alejandro Aguado; Ramon Casellas; Alberto Castro; Filippo Cugini; Piero Castoldi; Luis Velasco; Victor Lopez
Dynamic operation of flexgrid networks might cause optical spectrum to be divided into fragments, which makes it difficult finding contiguous spectrum of the required width for incoming connection requests, leading thus to an increased blocking probability. To alleviate to some extent that spectrum fragmentation, the central frequency of already established connections can be shifted to create wider contiguous spectrum fragments to be allocated to incoming connections; this procedure is called spectrum defragmentation. In this paper, we propose using the so called applications based network operations (ABNO) architecture, currently under standardization in the IETF, to deal with the defragmentation use case while the network is in operation. A workflow involving several elements in the ABNO architecture is proposed and experimentally assessed in a distributed test bed connecting facilities in three major European cities.
Journal of Lightwave Technology | 2015
Ll. Gifre; Francesco Paolucci; Luis Velasco; Alejandro Aguado; F. Cugini; Piero Castoldi; Victor Lopez
Traffic affected by link failures can be recovered using path restoration schemes. In dynamically operated networks provided with a control plane, restoration algorithms run in a centralized element, such as the path computation element (PCE). To increase traffic restorability in flexgrid networks, multiple paths, subconnections , can be used to restore every single affected connection. However, the multipath restoration scheme might result in a poor resource utilization entailing a lesser grade of service. In-operation network planning algorithms can be used to mitigate this problem once the failed link is repaired; we propose solving the so-called multipath after failure repair optimization problem (MP-AFRO) to reduce subconnections count by aggregating those belonging to the same original connection and rerouting the resulting connection to release spectral resources. The MP-AFRO problem is modeled using a mixed integer linear program formulation. In view of the complexity of the model and the limited time to solve the problem, we propose a heuristic algorithm that provides a good tradeoff between complexity and optimality. The performance on the MP-AFRO heuristic is firstly validated by simulation. Next, the heuristic algorithm is deployed inside an in-operation planning tool in the form of back-end PCE (bPCE) inside the application-based network operations architecture controlling a network; the bPCE is connected to the centralized active stateful PCE. MP-AFRO is experimentally demonstrated using a distributed field trial test-bed connecting the premises of Telefonica (Madrid), CNIT (Pisa), and UPC (Barcelona).
Journal of Lightwave Technology | 2016
George Saridis; Shuping Peng; Yan Yan; Alejandro Aguado; Bingli Guo; Murat Arslan; Christopher L. Jackson; W Wang Miao; N Nicola Calabretta; Fernando Agraz; Salvatore Spadaro; Giacomo Bernini; Nicola Ciulli; Georgios Zervas; Reza Nejabati; Dimitra Simeonidou
Modern high-performance data centers are responsible for delivering a huge variety of cloud applications to the end-users, which are increasingly pushing the limits of the currently deployed computing and network infrastructure. All-optical dynamic data center network (DCN) architectures are strong candidates to overcome those adversities, especially when they are combined with an intelligent software defined control plane. In this paper, we report the first harmonious integration of an optical flexible hardware framework operated by an agile software and virtualization platform. The LIGHTNESS deeply programmable all-optical circuit and packet switched data plane is able to perform unicast/multicast switch-over on-demand, while the powerful software defined networking (SDN) control plane enables the virtualization of computing and network resources creating a virtual data center and virtual network functions (VNF) on top of the data plane. We experimentally demonstrate realistic intra DCN with deterministic latencies for both unicast and multicast, showcasing monitoring, and database migration scenarios each of which is enabled by an associated network function virtualization element. Results demonstrate a fully functional complete unification of an advanced optical data plane with an SDN control plane, promising more efficient management of the next-generation data center compute and network resources.
Journal of Lightwave Technology | 2017
Alejandro Aguado; Emilio Hugues-Salas; Paul Anthony Haigh; Jaume Marhuenda; Alasdair B. Price; Philip Sibson; Jake Kennard; Christopher Erven; John Rarity; Mark G. Thompson; Andrew Lord; Reza Nejabati; Dimitra Simeonidou
Quantum key distribution (QKD) is a state-of-the-art method of generating cryptographic keys by exchanging single photons. Measurements on the photons are constrained by the laws of quantum mechanics, and it is from this that the keys derive their security. Current public key encryption relies on mathematical problems that cannot be solved efficiently using present-day technologies; however, it is vulnerable to computational advances. In contrast QKD generates truly random keys secured against computational advances and more general attacks when implemented properly. On the other hand, networks are moving towards a process of softwarization with the main objective to reduce cost in both, the deployment and in the network maintenance. This process replaces traditional network functionalities (or even full network instances) typically performed in network devices to be located as software distributed across commodity data centers. Within this context, network function virtualization (NFV) is a new concept in which operations of current proprietary hardware appliances are decoupled and run as software instances. However, the security of NFV still needs to be addressed prior to deployment in the real world. In particular, virtual network function (VNF) distribution across data centers is a risk for network operators, as an eavesdropper could compromise not just virtualized services, but the whole infrastructure. We demonstrate, for the first time, a secure architectural solution for VNF distribution, combining NFV orchestration and QKD technology by scheduling an optical network using SDN. A time-shared approach is designed and presented as a cost-effective solution for practical deployment, showing the performance of different quantum links in a distributed environment.
Journal of Lightwave Technology | 2017
Josep M. Fabrega; M. Svaluto Moreolo; Arturo Mayoral; Ricard Vilalta; Ramon Casellas; R. Martínez; R. Munoz; Yuki Yoshida; Ken-ichi Kitayama; Yutaka Kai; Masato Nishihara; Ryo Okabe; Takehito Tanaka; Tomoo Takahara; Jens C. Rasmussen; Noboru Yoshikane; X. Cao; Takehiro Tsuritani; Itsuro Morita; K. Habel; Ronald Freund; Victor Lopez; Alejandro Aguado; Shuangyi Yan; Dimitra Simeonidou; Thomas Szyrkowiec; Achim Autenrieth; Masaki Shiraiwa; Yoshinari Awaji; N. Wada
In this Paper, we experimentally demonstrate highly flexible and intelligent interdomain coordinated actions based on adaptive software-defined networking (SDN) orchestration. An advanced multidomain multitechnology testbed is implemented, which consists of a 400-Gb/s variable capacity optical packet switching domain and a Tb/s-class flexi-grid wavelength division multiplexed optical circuit switching domain. The SDN-controllable transponders and the extended transport applications programming interface enable the congestion-aware provisioning of end-to-end real-time services. At the data plane level, different transponders based on orthogonal frequency division multiplexing are employed for inter/intradomain links in order to adaptively provision services with fine granularity. For adaptation, SDN-capable domain-specific optical performance monitors are also introduced. In the control plane, the applications based network operations architecture has been extended and addressed as an adaptive SDN orchestrator.
IEEE\/OSA Journal of Optical Communications and Networking | 2017
Arturo Mayoral; Ricard Vilalta; Raul Muñoz; Ramon Casellas; Ricardo Martínez; Michela Svaluto Moreolo; Josep M. Fabrega; Alejandro Aguado; Shuangyi Yan; Dimitra Simeonidou; Jose Manuel Gran; Victor Lopez; Pavel Kaczmarek; Rafal Szwedowski; Thomas Szyrkowiec; Achim Autenrieth; Norboru Yoshikane; Takehiro Tsuritani; Itsuro Morita; Masaki Shiraiwa; Naoya Wada; Masato Nishihara; Takehito Tanaka; Tomoo Takahara; Jens C. Rasmussen; Yuki Yoshida; Ken-ichi Kitayama
In the context of the fifth generation of mobile technology (5G), multiple technologies will converge into a unified end-to-end system. For this purpose, software defined networking (SDN) is proposed, as the control paradigm will integrate all network segments and heterogeneous optical and wireless network technologies together with massive storage and computing infrastructures. The control orchestration protocol is presented as a unified transport application programming interface solution for joint cloud/network orchestration, allowing interworking of heterogeneous control planes to provide provisioning and recovery of quality of service (QoS)-aware end-to-end services. End-to-end QoS is guaranteed by provisioning and restoration schemes, which are proposed for optical circuit/packet switching restoration by means of signal monitoring and adaptive modulation and adaptive route control, respectively. The proposed solution is experimentally demonstrated in an international multi-partner test bed, which consists of a multi-domain transport network comprising optical circuit switching and optical packet switching domains controlled by SDN/OpenFlow and Generalized Multiprotocol Label Switching (GMPLS) control planes and a distributed cloud infrastructure. The results show the dynamic provisioning of IT and network resources and recovery capabilities of the architecture.
european conference on optical communication | 2015
Alejandro Aguado; Shuping Peng; Maria Victoria Alvarez; Victor Lopez; Thomas Szyrkowiec; Achim Autenrieth; Ricard Vilalta; Raul Muñoz; Ramon Casellas; Ricardo Martínez; Noboru Yoshikane; Takehiro Tsuritani; Reza Nejabati; Dimitra Simeonidou
Application-based Network Operations consists of existing components offering an application-driven network management. We validate its applicability to multi-tenant networks in multi-technology optical domains based on congestion detection and failure recovery by demonstrating fast reconfiguration, while keeping the upper layer unaware.
european conference on optical communication | 2014
Francesco Paolucci; Jaume Marhuenda; Alejandro Aguado; Luis Velasco; F. Cugini; Piero Castoldi; Victor Lopez; Telefónica Investigación
We demonstrate an orchestrated inter-datacenter multicast connectivity for Ethernet services. An ABNO-driven workflow is experimentally validated to provision p2mp connectivity over a multilayer Ethernet-over-Flexgrid network. Experimental validation was carried out on a distributed infrastructure connecting Telefonica, CNIT, and UPC premises.
ubiquitous computing | 2016
Charalampos Rotsos; Arsham Farshad; Nicholas Peter Hart; Alejandro Aguado; Sharvesh Bidkar; Kyriakos Sideris; Daniel King; Lyndon Fawcett; Jamie Bird; Andreas Mauthe; Nicholas J. P. Race; David Hutchison
Network services are the key mechanism for operators to introduce intelligence and generate profit from their infrastructures. The growth of the number of network users and the stricter application network requirements have highlighted a number of challenges in orchestrating services using existing production management and configuration protocols and mechanisms. Recent networking paradigms like Software Defined Networking (SDN) and Network Function Virtualization (NFV), provide a set of novel control and management interfaces that enable unprecedented automation, flexibility and openness capabilities in operator infrastructure management. This paper presents Baguette, a novel and open service orchestration framework for operators. Baguette supports a wide range of network technologies, namely optical and wired Ethernet technologies, and allows service providers to automate the deployment and dynamic re-optimization of network services. We present the design of the orchestrator and elaborate on the integration of Baguette with existing low-level network and cloud management frameworks.