Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alejandro Berna-Erro is active.

Publication


Featured researches published by Alejandro Berna-Erro.


Journal of Biological Chemistry | 2011

STIM1 and STIM2 are located in the acidic Ca2+ stores and associates with Orai1 upon depletion of the acidic stores in human platelets.

Hanene Zbidi; Isaac Jardin; Geoffrey E. Woodard; Jose J. Lopez; Alejandro Berna-Erro; Ginés M. Salido; Juan A. Rosado

Mammalian cells accumulate Ca2+ into agonist-sensitive acidic organelles, vesicles that possess a vacuolar proton- ATPase. Acidic Ca2+ stores include secretory granules and lysosome-related organelles. Current evidence clearly indicates that acidic Ca2+ stores participate in cell signaling and function, including the activation of store-operated Ca2+ entry in human platelets upon depletion of the acidic stores, although the mechanism underlying the activation of store-operated Ca2+ entry controlled by the acidic stores remains unclear. STIM1 has been presented as the endoplasmic reticulum Ca2+ sensor, but its role sensing intraluminal Ca2+ concentration in the acidic stores has not been investigated. Here we report that STIM1 and STIM2 are expressed in the lysosome-related organelles and dense granules in human platelets isolated by immunomagnetic sorting. Depletion of the acidic Ca2+ stores using the specific vacuolar proton-ATPase inhibitor, bafilomycin A1, enhanced the association between STIM1 and STIM2 as well as between these proteins and the plasma membrane channel Orai1. Depletion of the acidic Ca2+ stores also induces time-dependent co-immunoprecipitation of STIM1 with the TRPC proteins hTRPC1 and hTRPC6, as well as between Orai1 and both TRPC proteins. In addition, bafilomycin A1 enhanced the association between STIM2 and SERCA3. These findings demonstrate the location of STIM1 and STIM2 in the acidic Ca2+ stores and their association with Ca2+ channels and ATPases upon acidic stores discharge.


Advances in Experimental Medicine and Biology | 2012

Store-Operated Ca 2+ Entry

Alejandro Berna-Erro; Pedro C. Redondo; Juan A. Rosado

Store-operated Ca(2+) entry (SOCE) is an ubiquitous and major mechanism for Ca(2+) influx in mammalian cells with important physiological relevance. Since the discovery of SOCE in 1986 both, the mechanism that communicates the amount of Ca(2+) accumulated in the intracellular Ca(2+) stores to the plasma membrane channels and the nature of the capacitative channels, have been a matter of intense investigation. During the last decade, two of the major elements of SOCE, STIM1, the Ca(2+) sensor of the intracellular Ca(2+) compartments, and Orai1, the protein forming the channel that conducts the capacitative Ca(2+) release-activated current I (CRAC), were identified. Together with these proteins, different homologues, including STIM2, Orai2 and Orai3, were identified, although their relevance in SOCE has not been fully characterized yet. Before the identification of STIM1 and Orai1, TRPC proteins were found to be involved in SOCE in different cell types, more likely conducting the non-selective capacitative current described as I (SOC). Current evidence indicates that STIM1, Orai1 and TRPC proteins dynamically interact forming a ternary complex that mediates SOCE in a number of cellular models. The dynamic interaction of STIM1 with Orai1, TRPCs or both might provide an explanation to the distinct capacitative currents described in different cell types.


Biochimica et Biophysica Acta | 2012

Capacitative and non-capacitative signaling complexes in human platelets.

Alejandro Berna-Erro; Carmen Galán; Natalia Dionisio; L. Gómez; Ginés M. Salido; Juan A. Rosado

Discharge of the intracellular Ca(2+) stores activates Ca(2+) entry through store-operated channels (SOCs). Since the recent identification of STIM1 and STIM2, as well as the Orai1 homologs, Orai2 and Orai3, the protein complexes involved in Ca(2+) signaling needs re-evaluation in native cells. Using real time PCR combined with Western blotting we have found the expression of the three Orai isoforms, STIM1, STIM2 and different TRPCs in human platelets. Depletion of the intracellular Ca(2+) stores with thapsigargin, independently of changes in cytosolic Ca(2+) concentration, enhanced the formation of a signaling complex involving STIM1, STIM2, Orai1, Orai2 and TRPC1. Furthermore, platelet treatment with the dyacylglicerol analog 1-oleoyl-2-acetyl-sn-glycerol (OAG) resulted in specific association of Orai3 with TRPC3. Treatment of platelets with arachidonic acid enhanced the association between Orai1 and Orai3 in human platelets and overexpression of Orai1 and Orai3 in HEK293 cells increased arachidonic acid-induced Ca(2+) entry. These results indicate that Ca(2+) store depletion results in the formation of exclusive signaling complexes involving STIM proteins, as well as Orai1, Orai2 and TRPC1, but not Orai3, which seems to be involved in non-capacitative Ca(2+) influx in human platelets.


Journal of Physiology and Biochemistry | 2012

Unraveling STIM2 function

Esther López; Ginés M. Salido; Juan A. Rosado; Alejandro Berna-Erro

The discovery of molecular players in capacitative calcium (Ca2+) entry, also referred to as store-operated Ca2+ entry (SOCE), supposed a great advance in the knowledge of cellular mechanisms of Ca2+ entry, which are essential for a broad range of cellular functions. The identification of STIM1 and STIM2 proteins as the sensors of Ca2+ stored in the endoplasmic reticulum unraveled the mechanism by which depletion of intracellular Ca2+ stores is communicated to store-operated Ca2+ channels located in the plasma membrane, triggering the activation of SOCE and intracellular Ca2+-dependent signaling cascades. Initial studies suggested a dominant function of STIM1 in SOCE and SOCE-dependent cellular functions compared to STIM2, especially those that participate in immune responses. Consequently, most of the subsequent studies focused on STIM1. However, during the last years, STIM2 has been demonstrated to play a more relevant and complex function than initially reported, being even important to sustain normal life in mice. These studies have led to reconsider the role of STIM2 in SOCE and its relevance in cellular physiology. This review is intended to summarize and provide an overview of the current data available about this exciting isoform, STIM2, and its actual position together with STIM1 in the mechanism of SOCE.


Cellular Signalling | 2012

STIM1 tyrosine-phosphorylation is required for STIM1-Orai1 association in human platelets.

Esther López; Isaac Jardin; Alejandro Berna-Erro; Nuria Bermejo; Ginés M. Salido; Stewart O. Sage; Juan A. Rosado; Pedro C. Redondo

Stromal interaction molecule 1 (STIM1) is a key element of the store-operated Ca(2+) entry mechanism (SOCE). Recently, regulation of STIM1 by glycosylation and phosphorylation on serine/threonine or proline residues has been described; however other modes of phosphorylation that are important for activating SOCE in platelets, such as tyrosine phosphorylation, have been poorly investigated. Here we investigate the latency of STIM1 phosphorylation on tyrosine residues during the first steps of SOCE activation. Human platelets were stimulated and fixed at desired times using rapid kinetic assays instruments, and immunoprecipitation and western blotting techniques were then used to investigate the pattern of STIM1 tyrosine phosphorylation during the first steps of SOCE activation. We have found that maximal STIM1 tyrosine phosphorylation occurred 2.5s after stimulation of human platelets with thapsigargin (Tg). STIM1 localized in the plasma membrane were also phosphorylated in platelets stimulated with Tg. By using chemical inhibitors that target different members of the Src family of tyrosine kinases (SKFs), two independent signaling pathways involved in STIM1 tyrosine phosphorylation during the first steps of SOCE activation were identified. We finally conclude that STIM1 tyrosine phosphorylation is a key event for the association of STIM1 with plasma membrane Ca(2+) channels such as Orai1, hence it is required for conducting SOCE activation.


Biochimica et Biophysica Acta | 2011

Acidic NAADP-releasable Ca2+ compartments in the megakaryoblastic cell line MEG01

Natalia Dionisio; Letizia Albarran; Jose J. Lopez; Alejandro Berna-Erro; Ginés M. Salido; Regis Bobe; Juan A. Rosado

BACKGROUND A novel family of intracellular Ca(2+)-release channels termed two-pore channels (TPCs) has been presented as the receptors of NAADP (nicotinic acid adenine dinucleotide phosphate), the most potent Ca(2+) mobilizing intracellular messenger. TPCs have been shown to be exclusively localized to the endolysosomal system mediating NAADP-evoked Ca(2+) release from the acidic compartments. OBJECTIVES The present study is aimed to investigate NAADP-mediated Ca(2+) release from intracellular stores in the megakaryoblastic cell line MEG01. METHODS Changes in cytosolic and intraluminal free Ca(2+) concentrations were registered by fluorimetry using fura-2 and fura-ff, respectively; TPC expression was detected by PCR. RESULTS Treatment of MEG01 cells with the H(+)/K(+) ionophore nigericin or the V-type H(+)-ATPase selective inhibitor bafilomycin A1 revealed the presence of acidic Ca(2+) stores in these cells, sensitive to the SERCA inhibitor 2,5-di-(tert-butyl)-1,4-hydroquinone (TBHQ). NAADP releases Ca(2+) from acidic lysosomal-like Ca(2+) stores in MEG01 cells probably mediated by the activation of TPC1 and TPC2 as demonstrated by TPC1 and TPC2 expression silencing and overexpression. Ca(2+) efflux from the acidic lysosomal-like Ca(2+) stores or the endoplasmic reticulum (ER) results in ryanodine-sensitive activation of Ca(2+)-induced Ca(2+) release (CICR) from the complementary Ca(2+) compartment. CONCLUSION Our results show for the first time NAADP-evoked Ca(2+) release from acidic compartments through the activation of TPC1 and TPC2, and CICR, in a megakaryoblastic cell line.


Journal of Cellular and Molecular Medicine | 2012

Orais and STIMs: physiological mechanisms and disease

Alejandro Berna-Erro; Geoffrey E. Woodard; Juan A. Rosado

•  Introduction•  Intracellular Ca2+ stores and disease  ‐ Mechanisms of intracellular Ca2+ homeostasis  ‐ Abnormal intracellular Ca2+ homeostasis and disease•  Sensing Ca2+ stores•  Importance of Orais and STIMs in tissues•  Participation of Orai and STIM in human diseases  ‐ Orai1‐deficient function and human disease  ‐ STIM1‐deficient function and human disease  ‐ Orai1 and STIM1 in human diabetic platelets•  Orai and STIM mutant mouse as models of disease  ‐ Sudden and perinatal mortality  ‐ Immunodeficiency  ‐ Autoimmune and inflammatory diseases  ‐ Skeletal muscle  ‐ Thrombosis and haemostasis  ‐ Neuronal system•  Emerging studies of Orai and STIM in cancer and cell cycle•  Concluding remarks


Biochimica et Biophysica Acta | 2014

Cytoskeletal and scaffolding proteins as structural and functional determinants of TRP channels.

Tarik Smani; Natalia Dionisio; Jose J. Lopez; Alejandro Berna-Erro; Juan A. Rosado

Transient receptor potential (TRP) channels are six transmembrane-spanning proteins, with variable selectivity for cations, that play a relevant role in intracellular Ca(2+) homeostasis. There is a large body of evidence that shows association of TRP channels with the actin cytoskeleton or even the microtubules and demonstrating the functional importance of this interaction for TRP channel function. Conversely, cation currents through TRP channels have also been found to modulate cytoskeleton rearrangements. The interplay between TRP channels and the cytoskeleton has been demonstrated to be essential for full activation of a variety of cellular functions. Furthermore, TRP channels have been reported to take part of macromolecular complexes including different signal transduction proteins. Scaffolding proteins play a relevant role in the association of TRP proteins with other signaling molecules into specific microdomains. Especially relevant are the roles of the Homer family members for the regulation of TRPC channel gating in mammals and INAD in the modulation of Drosophila TRP channels. This article is part of a Special Issue entitled: Reciprocal influences between cell cytoskeleton and membrane channels, receptors and transporters. Guest Editor: Jean Claude Hervé.


Scientific Reports | 2016

Dynamic interaction of SARAF with STIM1 and Orai1 to modulate store-operated calcium entry.

Letizia Albarran; Jose J. Lopez; Nidhal Ben Amor; Francisco E. Martin-Cano; Alejandro Berna-Erro; Tarik Smani; Ginés M. Salido; Juan A. Rosado

Ca2+ influx by store-operated Ca2+ channels is a major mechanism for intracellular Ca2+ homeostasis and cellular function. Here we present evidence for the dynamic interaction between the SOCE-associated regulatory factor (SARAF), STIM1 and Orai1. SARAF overexpression attenuated SOCE and the STIM1-Orai1 interaction in cells endogenously expressing STIM1 and Orai1 while RNAi-mediated SARAF silencing induced opposite effects. SARAF impaired the association between Orai1 and the Orai1-activating small fragment of STIM1 co-expressed in the STIM1-deficient NG115-401L cells. Cell treatment with thapsigargin or physiological agonists results in direct association of SARAF with Orai1. STIM1-independent interaction of SARAF with Orai1 leads to activation of this channel. In cells endogenously expressing STIM1 and Orai1, Ca2+ store depletion leads to dissociation of SARAF with STIM1 approximately 30s after treatment with thapsigargin, which paralleled the increase in SARAF-Orai1 interaction, followed by reinteraction with STIM1 and dissociation from Orai1. Co-expression of SARAF and either Orai1 or various N-terminal deletion Orai1 mutants did not alter SARAF-Orai1 interaction; however, expression of C-terminal deletion Orai1 mutants or blockade of the C-terminus of Orai1 impair the interaction with SARAF. These observations suggest that SARAF exerts an initial positive role in the activation of SOCE followed by the facilitation of SCDI of Orai1.


Journal of Cellular and Molecular Medicine | 2013

Long-term mTOR inhibitors administration evokes altered calcium homeostasis and platelet dysfunction in kidney transplant patients

Esther López; Alejandro Berna-Erro; Nuria Bermejo; José María Brull; Rocío Martinez; Guadalupe Garcia Pino; Raul Alvarado; Ginés M. Salido; Juan A. Rosado; Juan José Cubero; Pedro C. Redondo

The use of the mammal target of rapamycin (mTOR) inhibitors has been consolidated as the therapy of election for preventing graft rejection in kidney transplant patients, despite their immunosuppressive activity is less strong than anti‐calcineurin agents like tacrolimus and cyclosporine A. Furthermore, as mTOR is widely expressed, rapamycin (a macrolide antibiotic produced by Streptomyces hygroscopicus) is recommended in patients presenting neoplasia due to its antiproliferative actions. Hence, we have investigated whether rapamycin presents side effects in the physiology of other cell types different from leucocytes, such as platelets. Blood samples were drawn from healthy volunteers and kidney transplant patients long‐term medicated with rapamycin: sirolimus and everolimus. Platelets were either loaded with fura‐2 or directly stimulated, and immunoassayed or fixed with Laemmlis buffer to perform the subsequent analysis of platelet physiology. Our results indicate that rapamycin evokes a biphasic time‐dependent alteration in calcium homeostasis and function in platelets from kidney transplant patients under rapamycin regime, as demonstrated by the reduction in granule secretion observed and subsequent impairment of platelet aggregation in these patients compared with healthy volunteers. Platelet count was also reduced in these patients, thus 41% of patients presented thrombocytopenia. All together our results show that long‐term administration of rapamycin to kidney transplant patients evokes alteration in platelet function.

Collaboration


Dive into the Alejandro Berna-Erro's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Esther López

University of Extremadura

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jose J. Lopez

University of Extremadura

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Isaac Jardin

University of Extremadura

View shared research outputs
Top Co-Authors

Avatar

Geoffrey E. Woodard

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Carmen Galán

University of Extremadura

View shared research outputs
Researchain Logo
Decentralizing Knowledge