Alejandro Brun
United States Department of Agriculture
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Alejandro Brun.
Archives of Virology | 2003
Joaquín Castilla; A. Gutiérrez Adán; Alejandro Brun; Belén Pintado; M. A. Ramírez; Beatriz Parra; Deirdre Doyle; Mark Rogers; F.J. Salguero; C. Sánchez; José Manuel Sánchez-Vizcaíno; Juan-María Torres
Summary. Transgenic mouse lines expressing different levels of the bovine prion protein gene (boPrPC) were generated. Upon infection with BSE prions, all transgenic lines tested exhibited characteristics of the bovine disease. Typical CNS spongiform degeneration was observed by histopathology and presence of PrPres could be detected both by Western blot and immunohistochemistry (IHC) assays, confirming for this model the absence of an interspecies barrier to BSE infection. Differences in incubation times post-inoculation depend upon the expression level of boPrPC and the amount of prions in the inoculum. In the absence of clinical signs, pathognomonic markers of disease could be detected as early as 150 or 196 days post-inoculation by IHC and Western blot analysis, respectively. This result indicates that prion infectivity in experimental mouse bioassays can be measured earlier by assessing immunologically the presence of PrPres in brains from inoculated animals. Although these transgenic mice were also susceptible to sheep scrapie prion infection, the extent of incubation times was considerably longer and PrPres was detected in only 70 % of inoculated mice. Interestingly, transgenic mice-propagated sheep scrapie prions displayed distinct biochemical properties when compared to both the original sheep scrapie and transgenic mouse-propagated BSE inoculum.
Journal of Virology | 2011
Hani Boshra; Gema Lorenzo; Núria Busquets; Alejandro Brun
ABSTRACT Rift Valley fever virus (RVFV) is a zoonotic pathogen that primarily affects ruminants but can also be lethal in humans. A negative-stranded RNA virus of the family Bunyaviridae, this pathogen is transmitted mainly via mosquito vectors. RVFV has shown the ability to inflict significant damage to livestock and is also a threat to public health. While outbreaks have traditionally occurred in sub-Saharan Africa, recent outbreaks in the Middle East have raised awareness of the potential of this virus to spread to Europe, Asia, and the Americas. Although the virus was initially characterized almost 80 years ago, the only vaccine approved for widespread veterinary use is an attenuated strain that has been associated with significant pathogenic side effects. However, increased understanding of the molecular biology of the virus over the last few years has led to recent advances in vaccine design and has enabled the development of more-potent prophylactic measures to combat infection. In this review, we discuss several aspects of RVFV, with particular emphasis on the molecular components of the virus and their respective roles in pathogenesis and an overview of current vaccine candidates. Progress in understanding the epidemiology of Rift Valley fever has also enabled prediction of potential outbreaks well in advance, thus providing another tool to combat the physical and economic impact of this disease.
FEBS Letters | 2001
Félix Gil; Alejandro Brun; Andrés Wigdorovitz; Rafael Catalá; Jorge Luis Martínez-Torrecuadrada; Ignacio Casal; Julio Salinas; M.V. Borca; José M. Escribano
A high‐yield production of a peptide vaccine in transgenic plants is described here. A 21‐mer peptide, which confers protection to dogs against challenge with virulent canine parvovirus, has been expressed in transgenic plants as an amino‐terminal translational fusion with the GUS gene. Transformants were selected on the basis of their GUS activities, showing expression levels of the recombinant protein up to 3% of the total leaf soluble protein, a production yield comparable to that obtained with the same epitope expressed by chimeric plant viruses. The immunogenicity of the plant‐derived peptide was demonstrated in mice immunized either intraperitoneally or orally with transgenic plant extracts, providing the suitability of the GUS fusions approach for low‐cost production of peptide vaccines.
Journal of General Virology | 1996
Fernando Ramiro-Ibáñez; Angel Ortega; Alejandro Brun; José M. Escribano; Covadonga Alonso
Induction of programmed cell death has been described during infection with many different viruses. We have investigated the influence of African swine fever virus (ASFV) on apoptosis of different cell populations during in vitro and in vivo infection. We observed apoptosis in ASFV-infected monocyte/macrophage and peripheral blood mononuclear cell cultures. Apoptosis was demonstrated in these cells by DNA fragmentation, DNA staining and DNA-associated histone fraction detection assays. Flow cytometry analysis of infected cultures also showed morphological and functional alterations, including changes in the cell cycle and percentage of cell fractions stained with propidium iodide. After in vivo infection with three different virulent strains of ASFV, apoptosis of infected cells from the mononuclear phagocytic system and closely related elements from different tissues was observed. Additionally, infected pigs showed an intense degree of apoptosis of lymphocytes, which are not infected by the virus. In lymph nodes and other lymphoid organs, broad bands of apoptotic cells presented typical nuclear changes under light microscopy. The occurrence of DNA fragmentation was confirmed in these tissues using terminal deoxynucleotidyl transferase-mediated dUTP nick end labelling. These findings, together with the pathological observations in infected pigs of a depletion in cell populations in lymphoid organs, suggest that virus interference with programmed cell death plays a central role in pathogenesis of this disease, being responsible for lymphoid organ impairment in acute ASFV infection.
Virus Research | 2011
Alejandro Brun; Juan Bárcena; Esther Blanco; Belén Borrego; Daniel Dory; José M. Escribano; Ghislaine Le Gall-Reculé; Javier Ortego; Linda K. Dixon
Developing vaccines for livestock provides researchers with the opportunity to perform efficacy testing in the natural hosts. This enables the evaluation of different strategies, including definition of effective antigens or antigen combinations, and improvement in delivery systems for target antigens so that protective immune responses can be modulated or potentiated. An impressive amount of knowledge has been generated in recent years on vaccine strategies and consequently a wide variety of antigen delivery systems is now available for vaccine research. This paper reviews several antigen production and delivery strategies other than those based on the use of live viral vectors. Genetic and protein subunit vaccines as well as alternative production systems are considered in this review.
Vaccine | 2008
Alejandro Brun; Emmanuel Albina; Tom Barret; David Chapman; Markus Czub; Linda K. Dixon; Günther M. Keil; Bernard Klonjkowski; Marie-Frédérique Le Potier; Geneviève Libeau; Javier Ortego; Jennifer Richardson; Haru-H. Takamatsu
Abstract The recent advances in molecular genetics, pathogenesis and immunology have provided an optimal framework for developing novel approaches in the rational design of vaccines effective against viral epizootic diseases. This paper reviews most of the viral-vector based antigen delivery systems (ADSs) recently developed for vaccine testing in veterinary species, including attenuated virus and DNA and RNA viral vectors. Besides their usefulness in vaccinology, these ADSs constitute invaluable tools to researchers for understanding the nature of protective responses in different species, opening the possibility of modulating or potentiating relevant immune mechanisms involved in protection.
The Journal of Neuroscience | 2004
Joaquín Castilla; Alfonso Gutierrez-Adan; Alejandro Brun; Deirdre Doyle; Belén Pintado; M. A. Ramírez; F.J. Salguero; Beatriz Parra; Fayna Diaz-San Segundo; José Manuel Sánchez-Vizcaíno; Mark Rogers; Juan Maria Torres
The bovine-porcine species barrier to bovine spongiform encephalopathy (BSE) infection was explored by generating transgenic mouse lines expressing the porcine prion protein (PrP) gene. All of the porcine transgenic (poTg) mice showed clinical signs of BSE after intracerebral inoculation with a high-titer BSE inoculum. The protease-resistant PrP (PrPres) was detected in 14% (3 of 22) of the BSE-infected poTg mice by immunohistochemical or immunoblot analysis. Despite being able to infect 42% (5 of 12) of control mice, a low-dose BSE inoculum failed to penetrate the species barrier in our poTg mouse model. The findings of these infectivity studies suggest that there is a strong species barrier between cows and pigs. However, after second-passage infection of poTg mice using brain homogenates of BSE-inoculated mice scoring negative for the incoming prion protein as inoculum, it was possible to detect the presence of the infectious agent. Thus, porcine-adapted BSE inocula were efficient at infecting poTg mice, giving rise to an incubation period substantially reduced from 300 to 177 d after inoculation and to the presence of PrPres in 100% (21 of 21) of the mice. We were therefore able to conclude that initial exposure to the bovine prion may lead to subclinical infection such that brain homogenates from poTg mice classified as uninfected on the basis of the absence of PrPres are infectious when used to reinoculate poTg mice. Collectively, our findings suggest that these poTg mice could be used as a sensitive bioassay model for prion detection in pigs.
Virology | 1992
Claudio L. Afonso; Carlos Alcaraz; Alejandro Brun; Michael D. Sussman; Dale V. Onisk; José M. Escribano; D. L. Rock
We have identified and characterized a 30-kDa phosphoprotein (p30) of African Swine Fever Virus (ASFV) that is synthesized, membrane localized, and released into the culture medium at early times after infection. Sequence analysis of the p30 open reading frame predicts a highly antigenic protein with putative phosphorylation, glycosylation, and membrane attachment sites.
The Journal of Neuroscience | 2004
Joaquín Castilla; Alfonso Gutierrez-Adan; Alejandro Brun; Belén Pintado; Beatriz Parra; M. A. Ramírez; F.J. Salguero; F. Díaz San Segundo; A. Rábano; María J. Cano; Juan-María Torres
In humans, insert mutations within the repetitive octapeptide region of the prion protein gene (Prnp) are often associated with familial spongiform encephalopathies. In this study, transgenic mice expressing bovine PrP (boTg mice) bearing an additional octapeptide insertion to the wild type (seven octapeptide repeats instead of six) showed an altered course of bovine spongiform encephalopathy (BSE) infection, reflected as reduced incubation times when compared with boTg mice expressing similar levels of the wild-type six-octapeptide protein. In both boTg mouse lines (bo6ORTg and bo7ORTg), incubation times were affected drastically depending on transgene expression levels and the inoculum used. In accordance with the lack of an interspecies barrier to BSE infection, we detected the typical signs of CNS spongiform degeneration by histopathological analysis and the presence of the bovine prion PrPres by Western blot or immunohistochemical analyses. When 7OR-PrPres was propagated in bo7ORTg mice, a similar earlier onset of clinical signs was observed compared with bo6ORTg mice. Proteins PrPC and PrPres containing seven octapeptides (7OR-PrPC and 7OR-PrPres) showed similar protease sensitivity and insolubility in nondenaturing detergents to homologous 6OR-PrPC and 6OR-PrPres. In addition, bo7ORTg mice showed a higher sensitivity than bo6ORTg mice for detecting prion infection in specimens previously diagnosed as negative by conventional biochemical techniques. In the absence of clinical signs of disease, 7OR-PrPres could be detected as early as 120 d after inoculation by immunohistochemical and Western blot analyses. These findings may help us improve the current mouse bioassays and understand the role of the octapeptide repeat region in susceptibility to disease.
Vaccine | 2010
Gema Lorenzo; Raquel Martín-Folgar; Esther Hevia; Hani Boshra; Alejandro Brun
In this work, plasmid constructs encoding two different M segment ORFs, as well as the nucleoprotein N, have been used in different vaccination regimes to test protection against a RVFV-MP12 virus challenge in a transgenic mouse model with impaired interferon type I response (IFNAR(-/-)). We obtained dose dependent protection in animals immunized with a construct encoding both mature glycoproteins (pCMV-M4), whereas only partial protection in animals vaccinated with either N construct (pCMV-N) or a combination of both plasmids (pCMV-M4+pCMV-N). The protection elicited by the expression of the mature glycoproteins could be directly related to the induction of neutralizing antibodies against them. Interestingly, the combination of both vaccine constructs induced specific lymphoblast proliferation upon stimulation with a recombinant nucleoprotein.