Alejandro Carpy
University of Tübingen
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Alejandro Carpy.
The EMBO Journal | 2012
Tripat Kaur Oberoi; Taner Dogan; Jennifer C. Hocking; Rolf-Peter Scholz; Juliane Mooz; Carrie L Anderson; Christiaan Karreman; Dagmar Meyer zu Heringdorf; Gudula Schmidt; Mika Ruonala; Kazuhiko Namikawa; Gregory S. Harms; Alejandro Carpy; Boris Macek; Reinhard W. Köster; Krishnaraj Rajalingam
Inhibitors of apoptosis proteins (IAPs) are a highly conserved class of multifunctional proteins. Rac1 is a well‐studied Rho GTPase that controls numerous basic cellular processes. While the regulation of nucleotide binding to Rac1 is well understood, the molecular mechanisms controlling Rac1 degradation are not known. Here, we demonstrate X‐linked IAP (XIAP) and cellular IAP1 (c‐IAP1) directly bind to Rac1 in a nucleotide‐independent manner to promote its polyubiquitination at Lys147 and proteasomal degradation. These IAPs are also required for degradation of Rac1 upon CNF1 toxin treatment or RhoGDI depletion. Consistently, downregulation of XIAP or c‐IAP1 by various strategies led to an increase in Rac1 protein levels in primary and tumour cells, leading to an elongated morphology and enhanced cell migration. Further, XIAP counteracts Rac1‐dependent cellular polarization in the developing zebrafish hindbrain and promotes the delamination of neurons from the normal tissue architecture. These observations unveil an evolutionarily conserved role of IAPs in controlling Rac1 stability thereby regulating the plasticity of cell migration and morphogenesis.
Molecular & Cellular Proteomics | 2014
Alejandro Carpy; Karsten Krug; Sabine Graf; André Koch; Sasa Popic; Silke Hauf; Boris Macek
To quantify cell cycle-dependent fluctuations on a proteome-wide scale, we performed integrative analysis of the proteome and phosphoproteome during the four major phases of the cell cycle in Schizosaccharomyces pombe. In highly synchronized cells, we identified 3753 proteins and 3682 phosphorylation events and relatively quantified 65% of the data across all phases. Quantitative changes during the cell cycle were infrequent and weak in the proteome but prominent in the phosphoproteome. Protein phosphorylation peaked in mitosis, where the median phosphorylation site occupancy was 44%, about 2-fold higher than in other phases. We measured copy numbers of 3178 proteins, which together with phosphorylation site stoichiometry enabled us to estimate the absolute amount of protein-bound phosphate, as well as its change across the cell cycle. Our results indicate that 23% of the average intracellular ATP is utilized by protein kinases to phosphorylate their substrates to drive regulatory processes during cell division. Accordingly, we observe that phosphate transporters and phosphate-metabolizing enzymes are phosphorylated and therefore likely to be regulated in mitosis.
Molecular & Cellular Proteomics | 2013
Karsten Krug; Alejandro Carpy; Gesa Behrends; Katarina Matic; Nelson C. Soares; Boris Macek
Recent advances in mass spectrometry (MS) have led to increased applications of shotgun proteomics to the refinement of genome annotation. The typical “proteo-genomic” workflows rely on the mapping of peptide MS/MS spectra onto databases derived via six-frame translation of the genome sequence. These databases contain a large proportion of spurious protein sequences which make the statistical confidence of the resulting peptide spectrum matches difficult to assess. Here we performed a comprehensive analysis of the Escherichia coli proteome using LTQ-Orbitrap MS and mapped the corresponding MS/MS spectra onto a six-frame translation of the E. coli genome. We hypothesized that the protein-coding part of the E. coli genome approaches complete annotation and that the majority of six frame-specific (novel) peptide spectrum matches can be considered as false positive identifications. We confirm our hypothesis by showing that the posterior error probability distribution of novel hits is almost identical to that of reversed (decoy) hits; this enables us to estimate the sensitivity, specificity, accuracy, and false discovery rate in a typical bacterial proteo-genomic dataset. We use two complementary computational frameworks for processing and statistical assessment of MS/MS data: MaxQuant and Trans-Proteomic Pipeline. We show that MaxQuant achieves a more sensitive six-frame database search with an acceptable false discovery rate and is therefore well suited for global genome reannotation applications, whereas the Trans-Proteomic Pipeline achieves higher specificity and is well suited for high-confidence validation. The use of a small and well-annotated bacterial genome enables us to address genome coverage achieved in state-of-the-art bacterial proteomics: identified peptide sequences mapped to all expressed E. coli proteins but covered 31.7% of the protein-coding genome sequence. Our results show that false discovery rates can be substantially underestimated even in “simple” proteo-genomic experiments obtained by means of high-accuracy MS and point to the necessity of further improvements concerning the coverage of peptide sequences by MS-based methods.
Molecular & Cellular Proteomics | 2012
Mirita Franz-Wachtel; Stephan A. Eisler; Karsten Krug; Silke Wahl; Alejandro Carpy; Alfred Nordheim; Klaus Pfizenmaier; Angelika Hausser; Boris Macek
Protein kinase D (PKD) is a cytosolic serine/threonine kinase implicated in regulation of several cellular processes such as response to oxidative stress, directed cell migration, invasion, differentiation, and fission of the vesicles at the trans-Golgi network. Its variety of functions must be mediated by numerous substrates; however, only a couple of PKD substrates have been identified so far. Here we perform stable isotope labeling of amino acids in cell culture-based quantitative phosphoproteomic analysis to detect phosphorylation events dependent on PKD1 activity in human cells. We compare relative phosphorylation levels between constitutively active and kinase dead PKD1 strains of HEK293 cells, both treated with nocodazole, a microtubule-depolymerizing reagent that disrupts the Golgi complex and activates PKD1. We identify 124 phosphorylation sites that are significantly down-regulated upon decrease of PKD1 activity and show that the PKD target motif is significantly enriched among down-regulated phosphorylation events, pointing to the presence of direct PKD1 substrates. We further perform PKD1 target motif analysis, showing that a proline residue at position +1 relative to the phosphorylation site serves as an inhibitory cue for PKD1 activity. Among PKD1-dependent phosphorylation events, we detect predominantly proteins with localization at Golgi membranes and function in protein sorting, among them several sorting nexins and members of the insulin-like growth factor 2 receptor pathway. This study presents the first global detection of PKD1-dependent phosphorylation events and provides a wealth of information for functional follow-up of PKD1 activity upon disruption of the Golgi network in human cells.
Nature Communications | 2016
Hadir Marei; Alejandro Carpy; Anna Woroniuk; Claire Vennin; Gavin White; Paul Timpson; Boris Macek; Angeliki Malliri
The small GTPase Rac1 has been implicated in the formation and dissemination of tumours. Upon activation by guanine nucleotide exchange factors (GEFs), Rac1 associates with a variety of proteins in the cell thereby regulating various functions, including cell migration. However, activation of Rac1 can lead to opposing migratory phenotypes raising the possibility of exacerbating tumour progression when targeting Rac1 in a clinical setting. This calls for the identification of factors that influence Rac1-driven cell motility. Here we show that Tiam1 and P-Rex1, two Rac GEFs, promote Rac1 anti- and pro-migratory signalling cascades, respectively, through regulating the Rac1 interactome. In particular, we demonstrate that P-Rex1 stimulates migration through enhancing the interaction between Rac1 and the actin-remodelling protein flightless-1 homologue, to modulate cell contraction in a RhoA-ROCK-independent manner.
The EMBO Journal | 2014
Armelle Natsuo Takeda; Tripat Kaur Oberoi-Khanuja; Gábor Glatz; Katharina Schulenburg; Rolf Peter Scholz; Alejandro Carpy; Boris Macek; Attila Reményi; Krishnaraj Rajalingam
Mitogen‐activated protein kinases (MAPKs) are highly conserved protein kinase modules, and they control fundamental cellular processes. While the activation of MAPKs has been well studied, little is known on the mechanisms driving their inactivation. Here we uncover a role for ubiquitination in the inactivation of a MAPK module. Extracellular‐signal‐regulated kinase 5 (ERK5) is a unique, conserved member of the MAPK family and is activated in response to various stimuli through a three‐tier cascade constituting MEK5 and MEKK2/3. We reveal an unexpected role for Inhibitors of Apoptosis Proteins (IAPs) in the inactivation of ERK5 pathway in a bimodal manner involving direct interaction and ubiquitination. XIAP directly interacts with MEKK2/3 and competes with PB1 domain‐mediated binding to MEK5. XIAP and cIAP1 conjugate predominantly K63‐linked ubiquitin chains to MEKK2 and MEKK3 which directly impede MEK5–ERK5 interaction in a trimeric complex leading to ERK5 inactivation. Consistently, loss of XIAP or cIAP1 by various strategies leads to hyperactivation of ERK5 in normal and tumorigenic cells. Loss of XIAP promotes differentiation of human primary skeletal myoblasts to myocytes in a MEKK2/3‐ERK5‐dependent manner. Our results reveal a novel, obligatory role for IAPs and ubiquitination in the physical and functional disassembly of ERK5‐MAPK module and human muscle cell differentiation.
Proteomics | 2014
Karsten Krug; Sasa Popic; Alejandro Carpy; Christoph Täumer; Boris Macek
Next‐generation sequencing projects focusing on genomes and transcriptomes identify millions of single nucleotide variants (SNVs), many of which result in single amino acid substitutions. These nonsynonymous (ns) SNVs are typically not incorporated into protein sequence databases used to identify MS/MS data. Here, we perform a comparative analysis of the assembly of nsSNV‐containing proteogenomic databases. We use a comprehensive transcriptome and proteome dataset of HeLa cells from the literature to derive and to incorporate SNVs into databases applicable to proteomics search engines, and to assess their performance in the identification of nsSNVs. We assemble the databases by (1) translation of SNV‐containing transcripts into all possible reading frames, (2) translation of predicted reading frame, (3) prediction of nsSNVs and subsequent incorporation into canonical protein sequences. We show substantial differences between generated databases in terms of represented nsSNVs and theoretical search space, affecting sensitivity and specificity of database search. We query the databases with >2.2M high‐resolution MS/MS spectra using MaxQuant software and identify 451 variant peptides, containing 401 nsSNVs. We conclude that prediction of reading frame and, if applicable, SNV effect result in comprehensive yet compact databases necessary to retain sensitivity in large‐scale analysis of nsSNVs called from transcriptomics data.
Cell Cycle | 2016
Hadir Marei; Alejandro Carpy; Boris Macek; Angeliki Malliri
ABSTRACT The small GTPase Rac1 is implicated in various cellular processes that are essential for normal cell function. Deregulation of Rac1 signaling has also been linked to a number of diseases, including cancer. The diversity of Rac1 functioning in cells is mainly attributed to its ability to bind to a multitude of downstream effectors following activation by Guanine nucleotide Exchange Factors (GEFs). Despite the identification of a large number of Rac1 binding partners, factors influencing downstream specificity are poorly defined, thus hindering the detailed understanding of both Rac1s normal and pathological functions. In a recent study, we demonstrated a role for 2 Rac-specific GEFs, Tiam1 and P-Rex1, in mediating Rac1 anti- versus pro-migratory effects, respectively. Importantly, via conducting a quantitative proteomic screen, we identified distinct changes in the Rac1 interactome following activation by either GEF, indicating that these opposing effects are mediated through GEF modulation of the Rac1 interactome. Here, we present the full list of identified Rac1 interactors together with functional annotation of the differentially regulated Rac1 binding partners. In light of this data, we also provide additional insights into known and novel signaling cascades that might account for the GEF-mediated Rac1-driven cellular effects.
Molecular & Cellular Proteomics | 2015
Alejandro Carpy; Avinash Patel; Ye Dee Tay; Iain M. Hagan; Boris Macek
Stable Isotope Labeling by Amino Acids (SILAC) is a commonly used method in quantitative proteomics. Because of compatibility with trypsin digestion, arginine and lysine are the most widely used amino acids for SILAC labeling. We observed that Schizosaccharomyces pombe (fission yeast) cannot be labeled with a specific form of arginine, 13C615N4-arginine (Arg-10), which limits the exploitation of SILAC technology in this model organism. We hypothesized that in the fission yeast the guanidinium group of 13C615N4-arginine is catabolized by arginase and urease activity to 15N1-labeled ammonia that is used as a precursor for general amino acid biosynthesis. We show that disruption of Ni2+-dependent urease activity, through deletion of the sole Ni2+ transporter Nic1, blocks this recycling in ammonium-supplemented EMMG medium to enable 13C615N4-arginine labeling for SILAC strategies in S. pombe. Finally, we employed Arg-10 in a triple-SILAC experiment to perform quantitative comparison of G1 + S, M, and G2 cell cycle phases in S. pombe.
CSH Protocols | 2017
André Koch; Claudia C. Bicho; Weronika E. Borek; Alejandro Carpy; Boris Macek; Silke Hauf; Kenneth E. Sawin
Stable isotope labeling by amino acids in cell culture (SILAC) enables the relative quantification of protein amounts and posttranslational modifications in complex biological samples through the use of stable heavy isotope-labeled amino acids. Here we describe methods for the application of SILAC to fission yeast Schizosaccharomyces pombe using either labeled lysine or a combination of labeled lysine and labeled arginine. The latter approach is more complicated than the use of labeled lysine alone but may yield a more comprehensive (phospho)proteomic analysis. The protocol includes methods for construction of SILAC-compatible strains, growth of cultures in labeled medium, cell harvesting, and protein extraction.