Alejandro Clocchiatti
Pontifical Catholic University of Chile
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Alejandro Clocchiatti.
The Astrophysical Journal | 2003
John L. Tonry; Brian Paul Schmidt; Brian J. Barris; Pablo Candia; Peter M. Challis; Alejandro Clocchiatti; Alison L. Coil; Alexei V. Filippenko; Peter Marcus Garnavich; Craig J. Hogan; Stephen T. Holland; Saurabh W. Jha; Robert P. Kirshner; Kevin Krisciunas; Bruno Leibundgut; Weidong Li; Thomas Matheson; Mark M. Phillips; Adam G. Riess; Robert A. Schommer; R. Chris Smith; Jesper Sollerman; Jason Spyromilio; Christopher W. Stubbs; Nicholas B. Suntzeff
The High-z Supernova Search Team has discovered and observed eight new supernovae in the redshift interval z = 0.3-1.2. These independent observations, analyzed by similar but distinct methods, confirm the results of Riess and Perlmutter and coworkers that supernova luminosity distances imply an accelerating universe. More importantly, they extend the redshift range of consistently observed Type Ia supernovae (SNe Ia) to z ≈ 1, where the signature of cosmological effects has the opposite sign of some plausible systematic effects. Consequently, these measurements not only provide another quantitative confirmation of the importance of dark energy, but also constitute a powerful qualitative test for the cosmological origin of cosmic acceleration. We find a rate for SN Ia of (1.4 ± 0.5) × 10-4 h3 Mpc-3 yr-1 at a mean redshift of 0.5. We present distances and host extinctions for 230 SN Ia. These place the following constraints on cosmological quantities: if the equation of state parameter of the dark energy is w = -1, then H0t0 = 0.96 ± 0.04, and ΩΛ - 1.4ΩM = 0.35 ± 0.14. Including the constraint of a flat universe, we find ΩM = 0.28 ± 0.05, independent of any large-scale structure measurements. Adopting a prior based on the Two Degree Field (2dF) Redshift Survey constraint on ΩM and assuming a flat universe, we find that the equation of state parameter of the dark energy lies in the range -1.48 -1, we obtain w < -0.73 at 95% confidence. These constraints are similar in precision and in value to recent results reported using the WMAP satellite, also in combination with the 2dF Redshift Survey.
The Astrophysical Journal | 1998
Brian Paul Schmidt; Nicholas B. Suntzeff; M. M. Phillips; Robert A. Schommer; Alejandro Clocchiatti; Robert P. Kirshner; Peter Marcus Garnavich; Peter M. Challis; Bruno Leibundgut; Jason Spyromilio; Adam G. Riess; Alexei V. Filippenko; Mario Hamuy; R. Chris Smith; Craig J. Hogan; Christopher W. Stubbs; Alan Hodgdon Diercks; David J. Reiss; R. L. Gilliland; John L. Tonry; Jose Manuel Campillos Maza; A. Dressler; Jeremy R. Walsh; Robin Ciardullo
The High-Z Supernova Search is an international collaboration to discover and monitor Type Ia supernovae (SNe Ia) at z > 0.2 with the aim of measuring cosmic deceleration and global curvature. Our collaboration has pursued a basic understanding of supernovae in the nearby universe, discovering and observing a large sample of objects and developing methods to measure accurate distances with SNe Ia. This paper describes the extension of this program to z ≥ 0.2, outlining our search techniques and follow-up program. We have devised high-throughput filters that provide accurate two-color rest frame B and V light curves of SNe Ia, enabling us to produce precise, extinction-corrected luminosity distances in the range 0.25 M=-0.2 -->−0.8+1.0 if ΩΛ = 0. For a spatially flat universe composed of normal matter and a cosmological constant, we find Ω -->M=0.4 -->−0.4+0.5, Ω
The Astrophysical Journal | 2007
William Michael Wood-Vasey; Gajus A. Miknaitis; Christopher W. Stubbs; Saurabh W. Jha; Adam G. Riess; Peter Marcus Garnavich; Robert P. Kirshner; C. A. Aguilera; Andrew Cameron Becker; J. W. Blackman; Stephane Blondin; Peter M. Challis; Alejandro Clocchiatti; A. Conley; Ricardo Alberto Covarrubias; Tamara M. Davis; A. V. Filippenko; Ryan J. Foley; Arti Garg; Malcolm Stuart Hicken; Kevin Krisciunas; Bruno Leibundgut; Weidong Li; Thomas Matheson; Antonino Miceli; Gautham S. Narayan; G. Pignata; Jose Luis Palacio Prieto; A. Rest; Maria Elena Salvo
{Λ}
The Astrophysical Journal | 2007
Tamara M. Davis; Edvard Mortsell; Jesper Sollerman; Andrew Cameron Becker; Stephane Blondin; Peter M. Challis; Alejandro Clocchiatti; Alexei V. Filippenko; Ryan J. Foley; Peter Marcus Garnavich; Saurabh W. Jha; Kevin Krisciunas; Robert P. Kirshner; Bruno Leibundgut; Weidong Li; Thomas Matheson; Gajus A. Miknaitis; G. Pignata; A. Rest; Adam G. Riess; Brian Paul Schmidt; R. C. Smith; Jason Spyromilio; Christopher W. Stubbs; Nicholas B. Suntzeff; John L. Tonry; William Michael Wood-Vasey; A. Zenteno
-->=0.6 -->−0.5+0.4. We demonstrate that with a sample of ~30 objects, we should be able to determine relative luminosity distances over the range 0 < z < 0.5 with sufficient precision to measure ΩM with an uncertainty of ±0.2.
The Astrophysical Journal | 1998
Peter Marcus Garnavich; Robert P. Kirshner; Peter M. Challis; John L. Tonry; R. L. Gilliland; Ryan Christopher Smith; Alejandro Clocchiatti; Alan Hodgdon Diercks; A. V. Filippenko; Mario Hamuy; Craig J. Hogan; Bruno Leibundgut; Mark M. Phillips; David J. Reiss; Adam G. Riess; Brian Paul Schmidt; Robert A. Schommer; Jason Spyromilio; Christopher W. Stubbs; Nicholas B. Suntzeff; Lisa A. Wells
We present constraints on the dark energy equation-of-state parameter, w = P/(rho c(2)), using 60 SNe Ia fromthe ESSENCE supernova survey. We derive a set of constraints on the nature of the dark energy assuming a flat universe. By including constraints on (Omega(M), w) from baryon acoustic oscillations, we obtain a value for a static equation-of-state parameter w = -1:05(-0.12)(+0: 13) (stat 1 sigma) +/- 0: 13 (sys) and Omega(M) = 0:274(-0.020)(+0:033) (stat 1 sigma) with a bestfit chi(2)/dof of 0.96. These results are consistent with those reported by the Supernova Legacy Survey from the first year of a similar program measuring supernova distances and redshifts. We evaluate sources of systematic error that afflict supernova observations and present Monte Carlo simulations that explore these effects. Currently, the largest systematic with the potential to affect our measurements is the treatment of extinction due to dust in the supernova host galaxies. Combining our set of ESSENCE SNe Ia with the first-results Supernova Legacy Survey SNe Ia, we obtain a joint constraint of w = -1:07(-0: 09)(+0:09) (stat 1 sigma) +/- 0: 13 ( sys), Omega(M) 0:267(-0:028)(+0:028) (stat 1 sigma) with a best-fit chi(2)/dof of 0.91. The current global SN Ia data alone rule out empty (Omega(M) = 0), matter-only Omega(M) = 0: 3, and Omega(M) = 1 universes at > 4.5 sigma. The current SN Ia data are fully consistent with a cosmological constant.
The Astrophysical Journal | 2004
Brian J. Barris; John L. Tonry; Stephane Blondin; Peter M. Challis; Ryan Chornock; Alejandro Clocchiatti; Alexei V. Filippenko; Peter Marcus Garnavich; Stephen T. Holland; Saurabh W. Jha; Robert P. Kirshner; Kevin Krisciunas; Bruno Leibundgut; Weidong Li; Thomas Matheson; Gajus A. Miknaitis; Adam G. Riess; Brian Paul Schmidt; R. Chris Smith; Jesper Sollerman; Jason Spyromilio; Christopher W. Stubbs; Nicholas B. Suntzeff; H. Aussel; K. C. Chambers; Michael S. Connelley; Dominic G. O’Donovan; J. Patrick Henry; Nick Kaiser; Michael C. Liu
The first cosmological results from the ESSENCE supernova survey (Wood-Vasey and coworkers) are extended to a wider range of cosmological models including dynamical dark energy and nonstandard cosmological models. We fold in a greater number of external data sets such as the recent Higher-z release of high-redshift supernovae (Riess and coworkers), as well as several complementary cosmological probes. Model comparison statistics such as the Bayesian and Akaike information criteria are applied to gauge the worth of models. These statistics favor models that give a good fit with fewer parameters. Based on this analysis, the preferred cosmological model is the flat cosmological constant model, where the expansion history of the universe can be adequately described with only one free parameter describing the energy content of the universe. Among the more exotic models that provide good fits to the data, we note a preference for models whose best-fit parameters reduce them to the cosmological constant model.
The Astrophysical Journal | 2007
Gajus A. Miknaitis; G. Pignata; A. Rest; William Michael Wood-Vasey; Stephane Blondin; Peter M. Challis; Robert Connon Smith; Christopher W. Stubbs; Nicholas B. Suntzeff; Ryan J. Foley; Thomas Matheson; John L. Tonry; C. A. Aguilera; J. W. Blackman; Andrew Cameron Becker; Alejandro Clocchiatti; Ricardo Alberto Covarrubias; Tamara M. Davis; A. V. Filippenko; Arti Garg; Peter Marcus Garnavich; Malcolm Stuart Hicken; Saurabh W. Jha; Kevin Krisciunas; Robert P. Kirshner; Bruno Leibundgut; Weidong Li; Antonino Miceli; Gautham S. Narayan; Jose Luis Palacio Prieto
We have coordinated Hubble Space Telescope (HST) photometry with ground-based discovery for three supernovae: Type Ia supernovae near z ≈ 0.5 (SN 1997ce, SN 1997cj) and a third event at z = 0.97 (SN 1997ck). The superb spatial resolution of HST separates each supernova from its host galaxy and leads to good precision in the light curves. We use these light curves and relations between luminosity, light-curve shape, and color calibrated from low-z samples to derive relative luminosity distances that are accurate to 10% at z ≈ 0.5 and 20% at z = 1. When the HST sample is combined with the distance to SN 1995K (z = 0.48), analyzed by the same precepts, we find that matter alone is insufficient to produce a flat universe. Specifically, for Ωm+ΩΛ = 1, Ωm is less than 1 with more than 95% confidence, and our best estimate of Ωm is -0.1±0.5 if ΩΛ = 0. Although this result is based on a very small sample whose systematics remain to be explored, it demonstrates the power of HST measurements for high-redshift supernovae.
The Astrophysical Journal | 2005
Armin Rest; Christopher W. Stubbs; Andrew Cameron Becker; Gajus A. Miknaitis; Antonino Miceli; Ricardo Alberto Covarrubias; Suzanne L. Hawley; Ryan Christopher Smith; Nicholas B. Suntzeff; Knut Anders Grova Olsen; Jose Luis Palacio Prieto; Rafael Hiriart; Douglas L. Welch; K. H. Cook; Sergei Nikolaev; Mark Edward Huber; G. Prochtor; Alejandro Clocchiatti; D. Minniti; Arti Garg; Peter M. Challis; Stefan C. Keller; Brian Paul Schmidt
We present photometric and spectroscopic observations of 23 high-redshift supernovae (SNe) spanning a range of z = 0.34-1.03, nine of which are unambiguously classified as Type Ia. These SNe were discovered during the IfA Deep Survey, which began in 2001 September and observed a total of 2.5 deg2 to a depth of approximately m ? 25-26 in RIZ over 9-17 visits, typically every 1-3 weeks for nearly 5 months, with additional observations continuing until 2002 April. We give a brief description of the survey motivations, observational strategy, and reduction process. This sample of 23 high-redshift SNe includes 15 at z ? 0.7, doubling the published number of objects at these redshifts, and indicates that the evidence for acceleration of the universe is not due to a systematic effect proportional to redshift. In combination with the recent compilation of Tonry et al. (2003), we calculate cosmological parameter density contours that are consistent with the flat universe indicated by the cosmic microwave background (Spergel et al. 2003). Adopting the constraint that ?total = 1.0, we obtain best-fit values of (?m,??) = (0.33, 0.67) using 22 SNe from this survey augmented by the literature compilation. We show that using the empty-beam model for gravitational lensing does not eliminate the need for ?? > 0. Experience from this survey indicates great potential for similar large-scale surveys while also revealing the limitations of performing surveys for z > 1 SNe from the ground.We present photometric and spectroscopic observations of 23 high redshift supernovae spanning a range of z=0.34-1.03, 9 of which are unambiguously classified as Type Ia. These supernovae were discovered during the IfA Deep Survey, which began in September 2001 and observed a total of 2.5 square degrees to a depth of approximately m=25-26 in RIZ over 9-17 visits, typically every 1-3 weeks for nearly 5 months, with additional observations continuing until April 2002. We give a brief description of the survey motivations, observational strategy, and reduction process. This sample of 23 high-redshift supernovae includes 15 at z>0.7, doubling the published number of objects at these redshifts, and indicates that the evidence for acceleration of the universe is not due to a systematic effect proportional to redshift. In combination with the recent compilation of Tonry et al. (2003), we calculate cosmological parameter density contours which are consistent with the flat universe indicated by the CMB (Spergel et al. 2003). Adopting the constraint that Omega_total = 1.0, we obtain best-fit values of (Omega_m, Omega_Lambda)=(0.33, 0.67) using 22 SNe from this survey augmented by the literature compilation. We show that using the empty-beam model for gravitational lensing does not eliminate the need for Omega_Lambda > 0. Experience from this survey indicates great potential for similar large-scale surveys while also revealing the limitations of performing surveys for z>1 SNe from the ground.
Nature | 2012
M. McDonald; Matthew B. Bayliss; B. A. Benson; Ryan J. Foley; J. Ruel; Peter W. Sullivan; Sylvain Veilleux; K. A. Aird; M. L. N. Ashby; Marshall W. Bautz; G. Bazin; L. E. Bleem; M. Brodwin; J. E. Carlstrom; C. L. Chang; H. M. Cho; Alejandro Clocchiatti; T. M. Crawford; A. T. Crites; T. de Haan; S. Desai; M. Dobbs; J. P. Dudley; E. Egami; W. Forman; Gordon Garmire; E. M. George; Michael D. Gladders; Anthony H. Gonzalez; N. W. Halverson
We describe the implementation and optimization of the ESSENCE supernova survey, which we have undertaken to measure the dark energy equation-of-state parameter, w = P/(rho c(2)). We present a meth ...
The Astrophysical Journal | 2008
Armin Rest; Thomas Matheson; Stephane Blondin; M. Bergmann; Douglas L. Welch; Nicholas B. Suntzeff; R. C. Smith; Knut Anders Grova Olsen; Jose Luis Palacio Prieto; Arti Garg; Peter M. Challis; Christopher W. Stubbs; Malcolm Stuart Hicken; M. Modjaz; William Michael Wood-Vasey; A. Zenteno; Guillermo J. Damke; A. Newman; Mark Edward Huber; K. H. Cook; Sergei Nikolaev; Andrew Cameron Becker; Antonino Miceli; Ricardo Alberto Covarrubias; L. Morelli; G. Pignata; Alejandro Clocchiatti; D. Minniti; Ryan J. Foley
Characterizing the nature and spatial distribution of the lensing objects that produce the previously measured microlensing optical depth toward the Large Magellanic Cloud (LMC) remains an open problem. We present an appraisal of the ability of the SuperMACHO Project, a next-generation microlensing survey directed toward the LMC, to discriminate between various proposed lensing populations. We consider two scenarios: lensing by a uniform foreground screen of objects and self-lensing by LMC stars. The optical depth for screen lensing is essentially constant across the face of the LMC, whereas the optical depth for self-lensing shows a strong spatial dependence. We have carried out extensive simulations, based on data obtained during the first year of the project, to assess the SuperMACHO surveys ability to discriminate between these two scenarios. In our simulations we predict the expected number of observed microlensing events for various LMC models for each of our fields by adding artificial stars to the images and estimating the spatial and temporal efficiency of detecting microlensing events using Monte Carlo methods. We find that the event rate itself shows significant sensitivity to the choice of the LMC luminosity function, limiting the conclusions that can be drawn from the absolute rate. If instead we determine the differential event rate across the LMC, we will decrease the impact of these systematic biases and render our conclusions more robust. With this approach the SuperMACHO Project should be able to distinguish between the two categories of lens populations. This will provide important constraints on the nature of the lensing objects and their contributions to the Galactic dark matter halo.