Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alejandro D. Roth is active.

Publication


Featured researches published by Alejandro D. Roth.


Journal of Immunology | 2008

Functional Consequences of Neuromyelitis Optica-IgG Astrocyte Interactions on Blood-Brain Barrier Permeability and Granulocyte Recruitment

Thierry Vincent; Philippe Saikali; Romain Cayrol; Alejandro D. Roth; Amit Bar-Or; Alexandre Prat; Jack P. Antel

Autoantibody neuromyelitis optica-IgG (NMO-IgG) recognizing aquaporin-4 (AQP4) is implicated as playing a central role in the physiopathology of NMO. The aim of this in vitro-based study was to characterize functional consequences of interaction between NMO-IgG and cells of the neurovascular unit (astrocytes and brain endothelium) that would provide insight into recognized features of NMO, namely altered blood-brain barrier (BBB) permeability and granulocyte recruitment. We used sera from NMO and longitudinally extensive transverse myelitis cases shown to bind in a characteristic perivascular pattern to primate cerebellar slices. Using flow cytometry, we found that sera from NMO-IgG-positive patients reacted with CNS-derived human fetal astrocytes, whereas sera from multiple sclerosis patients did not. We demonstrated that NMO-IgG binding to astrocytes alters aquaporin-4 polarized expression and increases permeability of a human BBB endothelium/astrocyte barrier. We further demonstrated that NMO-IgG binding to human fetal astrocytes can result in NK cell degranulation, astrocyte killing by Ab-dependent cellular cytotoxicity and complement-dependent granulocyte attraction through the BBB model. Our study highlights important functional roles for NMO-IgG that could account for pathological lesions and BBB dysfunction observed in NMO.


Science | 2005

Glial membranes at the node of Ranvier prevent neurite outgrowth.

Jeffrey K. Huang; Greg R. Phillips; Alejandro D. Roth; Liliana Pedraza; Weisong Shan; Wiam Belkaid; Sha Mi; Asa Fex-Svenningsen; Laurence Florens; John R. Yates; David R. Colman

Nodes of Ranvier are regularly placed, nonmyelinated axon segments along myelinated nerves. Here we show that nodal membranes isolated from the central nervous system (CNS) of mammals restricted neurite outgrowth of cultured neurons. Proteomic analysis of these membranes revealed several inhibitors of neurite outgrowth, including the oligodendrocyte myelin glycoprotein (OMgp). In rat spinal cord, OMgp was not localized to compact myelin, as previously thought, but to oligodendroglia-like cells, whose processes converge to form a ring that completely encircles the nodes. In OMgp-null mice, CNS nodes were abnormally wide and collateral sprouting was observed. Nodal ensheathment in the CNS may stabilize the node and prevent axonal sprouting.


Glia | 2010

A proteome map of axoglial specializations isolated and purified from human central nervous system

Ajit S. Dhaunchak; Jeffrey K. Huang; Omar De Faria; Alejandro D. Roth; Liliana Pedraza; Jack P. Antel; Amit Bar‐Or; David R. Colman

Compact myelin, the paranode, and the juxtaparanode are discrete domains that are formed on myelinated axons. In humans, neurological disorders associated with loss of myelin, including Multiple Sclerosis, often also result in disassembly of the node of Ranvier. Despite the importance of these domains in the proper functioning of the CNS, their molecular composition and assembly mechanism remains largely unknown. We therefore performed a large‐scale proteomics MudPIT screen for the identification of proteins in human myelin and axogliasomal fractions. We identified over 1,000 proteins in these fractions. Since even minor perturbations in neuron‐glial interactions can uncouple the glial support of axons, the proteome map presented here can be used as a reference library for “myelin health” and disease states, including white matter disorders such as leukodystrophies and multiple sclerosis.


ACS Chemical Neuroscience | 2012

Substrate Micropatterning as a New in Vitro Cell Culture System to Study Myelination

Dalinda Liazoghli; Alejandro D. Roth; Peter Thostrup; David R. Colman

Myelination is a highly regulated developmental process whereby oligodendrocytes in the central nervous system and Schwann cells in the peripheral nervous system ensheathe axons with a multilayered concentric membrane. Axonal myelination increases the velocity of nerve impulse propagation. In this work, we present a novel in vitro system for coculturing primary dorsal root ganglia neurons along with myelinating cells on a highly restrictive and micropatterned substrate. In this new coculture system, neurons survive for several weeks, extending long axons on defined Matrigel tracks. On these axons, myelinating cells can achieve robust myelination, as demonstrated by the distribution of compact myelin and nodal markers. Under these conditions, neurites and associated myelinating cells are easily accessible for studies on the mechanisms of myelin formation and on the effects of axonal damage on the myelin sheath.


PLOS ONE | 2015

Shh Signaling through the Primary Cilium Modulates Rat Oligodendrocyte Differentiation.

Paulina Falcón-Urrutia; Carlos M. Carrasco; Pablo Lois; Verónica Palma; Alejandro D. Roth

Primary Cilia (PC) are a very likely place for signal integration where multiple signaling pathways converge. Two major signaling pathways clearly shown to signal through the PC, Sonic Hedgehog (Shh) and PDGF-Rα, are particularly important for the proliferation and differentiation of oligodendrocytes, suggesting that their interaction occurs in or around this organelle. We identified PC in rat oligodendrocyte precursor cells (OPCs) and found that, while easily detectable in early OPCs, PC are lost as these cells progress to terminal differentiation. We confirmed the interaction between these pathways, as cyclopamine inhibition of Hedgehog function impairs both PDGF-mediated OPC proliferation and Shh-dependent cell branching. However, we failed to detect PDGF-Rα localization into the PC. Remarkably, ciliobrevin-mediated disruption of PC and reduction of OPC process extension was counteracted by recombinant Shh treatment, while PDGF had no effect. Therefore, while PDGF-Rα-dependent OPC proliferation and survival most probably does not initiate at the PC, still the integrity of this organelle and cilium-centered pathway is necessary for OPC survival and differentiation.


Advances in Experimental Medicine and Biology | 2016

Oligodendrocytes: Functioning in a Delicate Balance Between High Metabolic Requirements and Oxidative Damage

Alejandro D. Roth; Marco T. Núñez

The study of the metabolic interactions between myelinating glia and the axons they ensheath has blossomed into an area of research much akin to the elucidation of the role of astrocytes in tripartite synapses (Tsacopoulos and Magistretti in J Neurosci 16:877-885, 1996). Still, unlike astrocytes, rich in cytochrome-P450 and other anti-oxidative defense mechanisms (Minn et al. in Brain Res Brain Res Rev 16:65-82, 1991; Wilson in Can J Physiol Pharmacol. 75:1149-1163, 1997), oligodendrocytes can be easily damaged and are particularly sensitive to both hypoxia and oxidative stress, especially during their terminal differentiation phase and while generating myelin sheaths. In the present review, we will focus in the metabolic complexity of oligodendrocytes, particularly during the processes of differentiation and myelin deposition, and with a specific emphasis in the context of oxidative stress and the intricacies of the iron metabolism of the most iron-loaded cells of the central nervous system (CNS).


The Journal of Comparative Neurology | 2015

The isthmic nuclei providing parallel feedback connections to the avian tectum have different neurochemical identities: Expression of glutamatergic and cholinergic markers in the chick (Gallus gallus).

Cristian González-Cabrera; Florencia Garrido-Charad; Alejandro D. Roth; Gonzalo Marín

Retinal inputs to the optic tectum (TeO) triggered by moving stimuli elicit synchronized feedback signals from two isthmic nuclei: the isthmi parvocelullaris (Ipc) and isthmi semilunaris (SLu). Both of these nuclei send columnar axon terminals back to the same tectal position receiving the retinal input. The feedback signals from the Ipc seem to act as an attentional spotlight by selectively boosting the propagation of retinal inputs from the tectum to higher visual areas. Although Ipc and SLu nuclei are widely considered cholinergic because of their immunoreactivity for choline acetyltransferase (ChAT), contradictory findings, including the expression of the vesicular glutamate transporter 2 (VGluT2) mRNA in Ipc neurons, have raised doubts about the purely cholinergic nature of this nucleus. In this study, in chicks, we revise the neurochemical identity of the isthmic nuclei by using in situ hybridization assays for VGluT2 along with three cholinergic markers: the vesicular acetylcholine transporter (VAChT), the high‐affinity choline transporter (CHT1) and ChAT. We found that neurons in the SLu showed strong mRNA expression of all three cholinergic markers, whereas the expression of VAChT mRNA in the Ipc was undetectable in our essays. Instead, Ipc neurons exhibited a strong expression of VGluT2 mRNA. Immunohistochemistry assays showed VGluT2 immunoreactivity in the TeO codistributing with anterogradely labeled Ipc axon‐terminal boutons, further supporting a glutamatergic function for the Ipc nucleus. Therefore, our results strongly suggest that, in the chick, whereas the feedback from the SLu to the TeO is indeed cholinergic, the feedback from the Ipc has a marked glutamatergic component. J. Comp. Neurol. 523:1341–1358, 2015.


Biological Research | 2013

Fatty acid composition of Drosophila photoreceptor light-sensitive microvilli.

Yorka Muñoz; Karen Fuenzalida; Miguel Bronfman; Arnaldo Gatica; Marcelo Sepúlveda; Juan Bacigalupo; Alejandro D. Roth; Ricardo Delgado

Phototransduction, the mechanism underlying the electrical response to light in photoreceptor cells, has been thoroughly investigated in Drosophila melanogaster, an essential model in signal transduction research. These cells present a highly specialized photosensitive membrane consisting of thousands of microvilli forming a prominent structure termed a rhabdomere. These microvilli encompass the phototransduction proteins, most of which are transmembrane and exclusively rhabdomeric. Rhabdomere membrane lipids play a crucial role in the activation of the transient receptor potential ionic channels (TRP and TRPL) responsible for initiating the photoresponse. Despite its importance, rhabdomere lipid composition has not been established. We developed a novel preparation enriched in rhabdomere membranes to perform a thorough characterization of the lipidomics of Drosophila rhabdomeres. Isolated eyes (500) were homogenized and subjected to a differential centrifugation protocol that generates a fraction enriched in rhabdomere membrane. Lipids extracted from this preparation were identified and quantified by gas chromatography coupled to mass spectrometry. We found an abundance of low sterol esters (C16:0, C18:0), highly abundant and diverse triglycerides, free fatty acids, a moderate variety of mono and diacyglycerols (C:16:0, 18:0, C18:1) and abundant phospholipids (principally C18:2). This preparation opens a new avenue for investigating essential aspects of phototransduction.


Biological Research | 2013

Septin 7: Actin cross-organization is required for axonal association of Schwann cells

Alejandro D. Roth; Dalinda Liazoghli; Felipe Perez De Arce; David R. Colman

Myelin sheaths present two distinct domains: compacted myelin spirals and flanking non-compacted cytoplasmic channels, where lipid and protein segregation is established by unknown mechanisms. Septins, a conserved family of membrane and cytoskeletal interacting GTPases, form intracellular diffusion barriers during cell division and neurite extension and are expressed in myelinating cells. Septins, particularly septin 7 (Sept7), the central constituent of septin polymers, are associated with the cytoplasmic channels of myelinating cells. Here we show that Schwann cells deprived of Sept7 fail to wrap around axons from dorsal root ganglion neurons and exhibit disorganization of the actin cytoskeleton. Likewise, Sept7 distribution is dependent on microfilament but not microtubule organization.


Neuron Glia Biology | 2005

New observations on the compact myelin proteome.

Alejandro D. Roth; Anna Ivanova; David R. Colman

Collaboration


Dive into the Alejandro D. Roth's collaboration.

Top Co-Authors

Avatar

David R. Colman

Montreal Neurological Institute and Hospital

View shared research outputs
Top Co-Authors

Avatar

Liliana Pedraza

Montreal Neurological Institute and Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jack P. Antel

McGill University Health Centre

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Greg R. Phillips

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

John R. Yates

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar

Laurence Florens

Stowers Institute for Medical Research

View shared research outputs
Top Co-Authors

Avatar

Weisong Shan

Icahn School of Medicine at Mount Sinai

View shared research outputs
Researchain Logo
Decentralizing Knowledge