Alejandro Guerrero
University of Málaga
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Alejandro Guerrero.
Journal of Anatomy | 2002
Jl Schib; José M. Icardo; Ana C. Durán; Alejandro Guerrero; D. López; Elvira Colvee; A. V. De Andrés; Valentín Sans-Coma
This paper reports on the presence of the conus arteriosus in the heart of the adult gilthead seabream, Sparus auratus (Perciformes, Teleostei). The junctional region between the single ventricle and the bulbus arteriosus has been studied by conventional light microscopy, and by scanning and transmission electron microscopy. In addition, fluorescent phalloidin and antibodies against the muscle myosin heavy chains, laminin and collagen type IV have been used. The conus arteriosus is a distinct muscular segment interposed between the ventricle and the bulbus arteriosus. It is clearly different from the bulbus arteriosus due to its myocardial nature. It can also be distinguished from the ventricular myocardium because: (1) it has a conus shape; (2) it is formed by compact, well‐vascularized myocardium; (3) it is surrounded on its inner and outer faces by fibrous layers rich in collagen and elastin; (4) it constitutes the anatomical support of the so‐termed conus valves; (5) it shows intense staining for laminin and type‐IV collagen; and (6) the myocardial cells located close to the inner fibrous layer are helicoidally arranged. By contrast, the ventricular myocardium is highly trabecular, lacks a compacta, shows no vessels, and presents barely detectable amounts of laminin and collagen type IV. The presence of a distinct conus arteriosus in the heart of an evolutionary advanced teleost species indicates that the conus is not a vestigial segment from the evolutionary or embryological points of view. The characteristic spatial arrangement of the conus myocytes strongly suggests that the conus is implicated in the mechanical performance of the conus valves.
Journal of Anatomy | 2003
José M. Icardo; Jl Schib; José L. Ojeda; Ana C. Durán; Alejandro Guerrero; Elvira Colvee; Daniela Amelio; Valentín Sans-Coma
The conus (bulbo‐ventricular) valves of teleosts perform a key function in the control of blood backflow during ventricular diastole. However, the structural characteristics of these valves are almost unknown. This paper presents a systematic anatomical, histological and structural study of the conus valves of the adult gilthead seabream (Sparus auratus). S. auratus shows two major left and right valves consisting of the leaflet and the supporting sinus. Each valvar leaflet can be divided into a stout proximal body and a flap‐like distal region. The proximal body is structured into three layers: a luminal fibrosa, a dense cellular core and a parietal fibrosa. The luminal fibrosa is a collagenous structure extending the entire length of the leaflet, while the parietal fibrosa is restricted to the most proximal area. The dense cellular core consists of fibroblastic cells and a matrix rich in glycoconjugates, collagen and elastin. The histochemical and structural data suggest that the luminal fibrosa bears most of the force associated with valvar closure, while the cellular core acts as a cushion dampening vibrations and absorbing the elastic recoil. The sinus wall is a fibrous layer which shows proximal–distal differences in thickness. It also shows compositional differences that can be related to mechanical function. We describe the presence of a fibrous cylinder formed by the sinus wall, the fibrous interleaflet triangles and the fibrous layer that covers the inner surface of the conus myocardium. This fibrous cylinder constitutes the structural nexus between the ventricle, the conus and the bulbus arteriosus, provides support for the conus valves and separates the valvar complex from the surrounding tissues. The structure of the conus valves in S. auratus is different from that found in other vertebrates. Anatomical similarities between the conus valves and the mammalian arterial valves are emphasized. Each phyletic group appears to have developed specific structures in order to perform similar functions.
Anatomical Record-advances in Integrative Anatomy and Evolutionary Biology | 2009
José M. Icardo; Alejandro Guerrero; Ana C. Durán; Elvira Colvee; Alberto Domezain; Valentín Sans-Coma
This article reports on the development of the epicardium in alevins of the sturgeon Acipenser naccarii, aged 4–25 days post‐hatching (dph). Epicardial development starts at 4 dph with formation of the proepicardium (PE) that arises as a bilateral structure at the boundary between the sinus venosus and the duct of Cuvier. The PE later becomes a midline organ arising from the wall of the sinus venosus and ending at the junction between the liver, the sinus venosus and the transverse septum. This relative displacement appears related to venous reorganization at the caudal pole of the heart. The mode and time of epicardium formation is different in the various heart chambers. The conus epicardium develops through migration of a cohesive epithelium from the PE villi, and is completed through bleb‐like aggregates detached from the PE. The ventricular epicardium develops a little later, and mostly through bleb‐like aggregates. The bulbus epicardium appears to derive from the mesothelium located at the junction between the outflow tract and the pericardial cavity. Strikingly, formation of the epicardium of the atrium and the sinus venosus is a very late event occurring after the third month of development. Associated to the PE, a sino‐ventricular ligament develops as a permanent connection. This ligament contains venous vessels that communicate the subepicardial coronary plexus and the sinus venosus, and carries part of the heart innervation. The development of the sturgeon epicardium shares many features with that of other vertebrate groups. This speaks in favour of conservative mechanisms across the evolutionary scale. Anat Rec, 2009.
Archive | 2009
José M. Icardo; Alejandro Guerrero; Ana C. Durán; Elvira Colvee; A. Domezain; Valentín Sans-Coma
We review the anatomic development of the sturgeon’s (Acipenser naccarii) heart. Attention has been focussed on the main developmental events that take place during the embryonic and early post-hatching periods. The study examines identification of the early heart tube, cardiac loop formation, and the transformation of the tubular heart into a multi-chambered organ in a temporal sequence. Also included are the development of the heart valves and that of the epicardium. Many of these processes have been followed into adulthood to illustrate the maturation of the different structures with age. On the whole, sturgeon heart formation appears to share many developmental mechanisms with other vertebrates. This indicates the conservation of the mechanisms along the phyletic scale. The development of the A. naccarii heart appears to be a very slow process in relation both to other sturgeon species and to other fish classes. This should allow detailed investigation of specific morphologic events. Many of the developmental changes experienced by the heart could well prove useful in establishing the chronology of both embryonic and juvenile specimens.
Annals of Anatomy-anatomischer Anzeiger | 2004
D. López; Ana C. Durán; M. C. Fernández; Alejandro Guerrero; J.M. Arqué; Valentín Sans-Coma
The formation of cartilage in aortic valves of Syrian hamsters was studied using histological, histochemical and immunohistochemical techniques. The sample consisted of 281 specimens aged 0-363 days, all of which had a normal (tricuspid) aortic valve. The first sign of valvular chondrogenesis is the presence of small groups of cells embedded in a type II collagen-positive matrix. These groups of cells, which can appear as early as one day after birth, increase in size and differentiate into hyaline cartilage or fibrocartilage. From the fourth day of life, all hamsters examined displayed cartilaginous foci in the aortic valve. They were located along the fibrous attachments of the valve leaflets to their respective sinuses, including the valve commissures. A considerable proportion (76%) of cartilages formed within the first 40 days of life, that is during the period of time in which the histogenesis of the valve takes place. The present observations are consistent with the assumption that in mammals, the precursors of the aortic valve chondrocytes are neural crest-derived cells. Results of a statistical analysis substantiate that the incidence is significantly higher in (1) the territory that comprises the collagenous condensation of the ventral commissure and the ventro-lateral and proximal fibrous attachments of the right leaflet to its sinus, and (2) the proximal fibrous attachment of dorsal leaflet to its sinus. These findings together with data in the literature concerning the distribution of stress in each leaflet-sinus assembly of the valve during the cardiac cycle, suggest that mechanical action might play an inductive role in the formation of the cartilaginous tissue in the aortic valve of mammals. In addition, they point to the possibility that locally intense mechanical stimulation is responsible for the differentiation of the anticipated cartilaginous tissue into hyaline cartilage.
Journal of Anatomy | 2004
Ana C. Durán; D. López; Alejandro Guerrero; A. Mendoza; J. M. Arqué; Valentín Sans-Coma
The formation of cartilage in the mammalian heart has been studied in the aortic and pulmonary valves. The chondrogenetic process that takes place in the cardiac skeleton is still unknown. The present study was designed to illustrate the ontogeny of cartilaginous foci occurring in the central fibrous body of the Syrian hamster (Mesocricetus auratus) heart. Hearts from 472 animals aged 0–708 days were examined using histological, histochemical and immunohistochemical techniques. Cartilage was present in the central fibrous body of 118 (25%) specimens. A further 104 hamsters were used for the detection of calcific deposits in the central fibrous body. Six (5.8%) showed calcified cartilage. The first sign related to chondrogenesis was the presence of small groups of cells embedded in a type II collagen‐positive extracellular matrix. These cellular groups, which can appear as early as 2 days after birth, differentiate into hyaline cartilage or, less frequently, into fibrocartilage. The highest production of cartilaginous foci takes place between days 40 and 80. Thereafter, formation of new foci is uncommon. This indicates that appearance of cartilage in the central fibrous body of the heart is not a consequence of cardiac aging. The cartilaginous foci seem to act as pivots resisting mechanical tensions generated during the cardiac cycle. Deposition of calcium in the extracellular matrix of the foci can be regarded as a reinforcement of the cartilaginous tissue.
Diseases of Aquatic Organisms | 2007
Alejandro Guerrero; Ana C. Durán; José M. Icardo; Borja Fernández; Alberto Domezain; Valentín Sans-Coma
This is the first description of a dorsoventral transposition of the heart chambers in sturgeons Acipenser naccarii. The affected individuals were 2 farmed alevins aged 9 and 10 d posthatching, respectively. One was examined by light microscopy and the other by scanning electron microscopy. In both cases, the atrium and sinus venosus occupied a left ventrolateral position, the ventricle, conus arteriosus and bulbus arteriosus were located dorsally, and the transverse septum was incomplete. The anomalous heart examined by light microscopy did not differ histologically from normal hearts of similar developmental stages. The abnormal dorsoventral arrangement of the heart chambers was presumably due to a distortion of the morphogenetic movements that bring the ventricle to the ventral and the atrium to the dorsal position. The present findings, together with genetic data reported in the literature, suggest that the defective cardiac phenotype detected in the present specimens might result from a mutation affecting the sturgeon ortholog of the zebrafish overlooped (olp) gene.
Journal of Morphology | 2004
Alejandro Guerrero; José M. Icardo; Ana C. Durán; Alejandro Gallego; Alberto Domezain; Elvira Colvee; Valentín Sans-Coma
Anatomy and Embryology | 2004
José M. Icardo; Alejandro Guerrero; Ana C. Durán; Alberto Domezain; Elvira Colvee; Valentín Sans-Coma
Journal of Morphology | 2003
D. López; Ana C. Durán; A. Victoria De Andrés; Alejandro Guerrero; Manuel Blasco; Valentín Sans-Coma