Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alejandro Gutierrez is active.

Publication


Featured researches published by Alejandro Gutierrez.


Nature | 2011

SCF(FBW7) regulates cellular apoptosis by targeting MCL1 for ubiquitylation and destruction.

Hiroyuki Inuzuka; Shavali Shaik; Ichiro Onoyama; Darning Gao; Alan Tseng; Richard S. Maser; Bo Zhai; Lixin Wan; Alejandro Gutierrez; Alan W. Lau; Yonghong Xiao; Amanda L. Christie; Jeffrey Settleman; Steven P. Gygi; Andrew L. Kung; Thomas Look; Keiichi I. Nakayama; Ronald A. DePinho; Wenyi Wei

The effective use of targeted therapy is highly dependent on the identification of responder patient populations. Loss of FBW7, which encodes a tumour-suppressor protein, is frequently found in various types of human cancer, including breast cancer, colon cancer and T-cell acute lymphoblastic leukaemia (T-ALL). In line with these genomic data, engineered deletion of Fbw7 in mouse T cells results in T-ALL, validating FBW7 as a T-ALL tumour suppressor. Determining the precise molecular mechanisms by which FBW7 exerts antitumour activity is an area of intensive investigation. These mechanisms are thought to relate in part to FBW7-mediated destruction of key proteins relevant to cancer, including Jun, Myc, cyclin E and notch 1 (ref. 9), all of which have oncoprotein activity and are overexpressed in various human cancers, including leukaemia. In addition to accelerating cell growth, overexpression of Jun, Myc or notch 1 can also induce programmed cell death. Thus, considerable uncertainty surrounds how FBW7-deficient cells evade cell death in the setting of upregulated Jun, Myc and/or notch 1. Here we show that the E3 ubiquitin ligase SCFFBW7 (a SKP1–cullin-1–F-box complex that contains FBW7 as the F-box protein) governs cellular apoptosis by targeting MCL1, a pro-survival BCL2 family member, for ubiquitylation and destruction in a manner that depends on phosphorylation by glycogen synthase kinase 3. Human T-ALL cell lines showed a close relationship between FBW7 loss and MCL1 overexpression. Correspondingly, T-ALL cell lines with defective FBW7 are particularly sensitive to the multi-kinase inhibitor sorafenib but resistant to the BCL2 antagonist ABT-737. On the genetic level, FBW7 reconstitution or MCL1 depletion restores sensitivity to ABT-737, establishing MCL1 as a therapeutically relevant bypass survival mechanism that enables FBW7-deficient cells to evade apoptosis. Therefore, our work provides insight into the molecular mechanism of direct tumour suppression by FBW7 and has implications for the targeted treatment of patients with FBW7-deficient T-ALL.


Nature | 2007

Chromosomally unstable mouse tumours have genomic alterations similar to diverse human cancers

Richard S. Maser; Bhudipa Choudhury; Peter J. Campbell; Bin Feng; Kwok-Kin Wong; Alexei Protopopov; Jennifer O'Neil; Alejandro Gutierrez; Elena Ivanova; Ilana Perna; Eric Lin; Vidya Mani; Shan Jiang; Kate McNamara; Sara Zaghlul; Sarah Edkins; Claire Stevens; Cameron Brennan; Eric Martin; Ruprecht Wiedemeyer; Omar Kabbarah; Cristina Nogueira; Gavin Histen; Marc R. Mansour; Veronique Duke; Letizia Foroni; Adele K. Fielding; Anthony H. Goldstone; Jacob M. Rowe; Yaoqi A. Wang

Highly rearranged and mutated cancer genomes present major challenges in the identification of pathogenetic events driving the neoplastic transformation process. Here we engineered lymphoma-prone mice with chromosomal instability to assess the usefulness of mouse models in cancer gene discovery and the extent of cross-species overlap in cancer-associated copy number aberrations. Along with targeted re-sequencing, our comparative oncogenomic studies identified FBXW7 and PTEN to be commonly deleted both in murine lymphomas and in human T-cell acute lymphoblastic leukaemia/lymphoma (T-ALL). The murine cancers acquire widespread recurrent amplifications and deletions targeting loci syntenic to those not only in human T-ALL but also in diverse human haematopoietic, mesenchymal and epithelial tumours. These results indicate that murine and human tumours experience common biological processes driven by orthologous genetic events in their malignant evolution. The highly concordant nature of genomic events encourages the use of genomically unstable murine cancer models in the discovery of biological driver events in the human oncogenome.


Blood | 2009

High frequency of PTEN, PI3K, and AKT abnormalities in T-cell acute lymphoblastic leukemia.

Alejandro Gutierrez; Takaomi Sanda; Ruta Grebliunaite; Arkaitz Carracedo; Leonardo Salmena; Yebin Ahn; Suzanne E. Dahlberg; Donna Neuberg; Lisa A. Moreau; Stuart S. Winter; Richard S. Larson; Jianhua Zhang; Alexei Protopopov; Lynda Chin; Pier Paolo Pandolfi; Lewis B. Silverman; Stephen P. Hunger; Stephen E. Sallan; A. Thomas Look

To more comprehensively assess the pathogenic contribution of the PTEN-PI3K-AKT pathway to T-cell acute lymphoblastic leukemia (T-ALL), we examined diagnostic DNA samples from children with T-ALL using array comparative genomic hybridization and sequence analysis. Alterations of PTEN, PI3K, or AKT were identified in 47.7% of 44 cases. There was a striking clustering of PTEN mutations in exon 7 in 12 cases, all of which were predicted to truncate the C2 domain without disrupting the phosphatase domain of PTEN. Induction chemotherapy failed to induce remission in 3 of the 4 patients whose lymphoblasts harbored PTEN deletions at the time of diagnosis, compared with none of the 12 patients with mutations of PTEN exon 7 (P = .007), suggesting that PTEN deletion has more adverse therapeutic consequences than mutational disruptions that preserve the phosphatase domain. These findings add significant support to the rationale for the development of therapies targeting the PTEN-PI3K-AKT pathway in T-ALL.


Science | 2014

An oncogenic super-enhancer formed through somatic mutation of a noncoding intergenic element

Marc R. Mansour; Brian J. Abraham; Lars Anders; Alla Berezovskaya; Alejandro Gutierrez; Adam D. Durbin; Julia Etchin; Lee N. Lawton; Stephen E. Sallan; Lewis B. Silverman; Mignon L. Loh; Stephen P. Hunger; Takaomi Sanda; Richard A. Young; A. Thomas Look

In certain human cancers, the expression of critical oncogenes is driven from large regulatory elements, called super-enhancers, that recruit much of the cell’s transcriptional apparatus and are defined by extensive acetylation of histone H3 lysine 27 (H3K27ac). In a subset of T-cell acute lymphoblastic leukemia (T-ALL) cases, we found that heterozygous somatic mutations are acquired that introduce binding motifs for the MYB transcription factor in a precise noncoding site, which creates a super-enhancer upstream of the TAL1 oncogene. MYB binds to this new site and recruits its H3K27 acetylase–binding partner CBP, as well as core components of a major leukemogenic transcriptional complex that contains RUNX1, GATA-3, and TAL1 itself. Additionally, most endogenous super-enhancers found in T-ALL cells are occupied by MYB and CBP, which suggests a general role for MYB in super-enhancer initiation. Thus, this study identifies a genetic mechanism responsible for the generation of oncogenic super-enhancers in malignant cells. Leukemia-associated mutations drive cell growth by creating a powerful transcriptional enhancer upstream of an oncogene. [Also see Perspective by Vähärautio and Taipale] A super-enhancer in leukemia development Human cancer genome projects have provided a wealth of information about mutations that reside within the coding regions of genes and drive tumor growth by functionally altering protein products. However, this mutational portrait of cancer is incomplete: A growing number of mutations are being found within gene regulatory regions. Mansour et al. present an intriguing example of this in a study of a childhood cancer, T-cell acute lymphoblastic leukemia (see the Perspective by Vähärautio and Taipale). An oncogene known to drive the growth of this cancer is expressed at high levels in the leukemic cells because the cells harbor mutations that create a powerful superenhancer (a DNA sequence that activates transcription) upstream of the oncogene. Science, this issue p. 1373; see also p. 1291


Blood | 2011

The BCL11B tumor suppressor is mutated across the major molecular subtypes of T-cell acute lymphoblastic leukemia

Alejandro Gutierrez; Alex Kentsis; Takaomi Sanda; Linda Holmfeldt; Shann Ching Chen; Jianhua Zhang; Alexei Protopopov; Lynda Chin; Suzanne E. Dahlberg; Donna Neuberg; Lewis B. Silverman; Stuart S. Winter; Stephen P. Hunger; Stephen E. Sallan; Shan Zha; Frederick W. Alt; James R. Downing; Charles G. Mullighan; A. Thomas Look

The BCL11B transcription factor is required for normal T-cell development, and has recently been implicated in the pathogenesis of T-cell acute lymphoblastic leukemia (T-ALL) induced by TLX overexpression or Atm deficiency. To comprehensively assess the contribution of BCL11B inactivation to human T-ALL, we performed DNA copy number and sequencing analyses of T-ALL diagnostic specimens, revealing monoallelic BCL11B deletions or missense mutations in 9% (n = 10 of 117) of cases. Structural homology modeling revealed that several of the BCL11B mutations disrupted the structure of zinc finger domains required for this transcription factor to bind DNA. BCL11B haploinsufficiency occurred across each of the major molecular subtypes of T-ALL, including early T-cell precursor, HOXA-positive, LEF1-inactivated, and TAL1-positive subtypes, which have differentiation arrest at diverse stages of thymocyte development. Our findings provide compelling evidence that BCL11B is a haploinsufficient tumor suppressor that collaborates with all major T-ALL oncogenic lesions in human thymocyte transformation.


British Journal of Haematology | 2007

Heat‐shock induction of T‐cell lymphoma/leukaemia in conditional Cre/lox‐regulated transgenic zebrafish

Hui Feng; David M. Langenau; Jennifer A. Madge; Andre Quinkertz; Alejandro Gutierrez; Donna Neuberg; John P. Kanki; A. Thomas Look

The zebrafish is an ideal vertebrate model system to investigate the complex genetic basis of cancer because it has the capacity for in vivo tumour‐cell imaging and forward genetic screens, and the molecular mechanisms regulating malignancy are remarkably conserved when compared with human. Our laboratory has previously generated transgenic zebrafish models that overexpress the mouse c‐Myc gene fused to enhanced green fluorescent protein (EGFP) and develop T‐cell acute lymphoblastic leukaemia (T‐ALL) that recapitulates the human disease both molecularly and pathologically. Our previous models have been limited by disease onset prior to sexual maturity and by the low disease penetrance when conditional transgenic embryos are injected with Cre RNA. Here, we report a novel system in which compound transgenic fish expressed both Cre controlled by the heat‐shock promoter and a rag2‐promoter‐regulated lox‐dsRED2‐lox‐EGFP‐mMyc cassette rag2‐LDL‐EMyc in developing T cells. After heat‐shock treatment at 3 d postfertilisation (dpf) for 45 min at 37°C, 81% of compound transgenic fish developed T‐lymphoblastic lymphoma (T‐LBL, mean latency 120 ± 43 (standard deviation) days of life), which rapidly progressed to T‐ALL. Heat‐shock‐regulated transgenic technology in zebrafish provides the missing link necessary to exploit the powerful genetic capacity of this organism to probe the multi‐step molecular pathogenesis of leukaemia.


Journal of Clinical Investigation | 2014

Phenothiazines induce PP2A-mediated apoptosis in T cell acute lymphoblastic leukemia

Alejandro Gutierrez; Li Pan; Richard W.J. Groen; Frederic Baleydier; Alex Kentsis; Jason J. Marineau; Ruta Grebliunaite; Elena Kozakewich; Casie Reed; Françoise Pflumio; Sandrine Poglio; Benjamin Uzan; Paul A. Clemons; Lynn VerPlank; Frank An; Jason Burbank; Stephanie Norton; Nicola Tolliday; Hanno Steen; Andrew P. Weng; H. Yuan; James E. Bradner; Constantine S. Mitsiades; A. Thomas Look

T cell acute lymphoblastic leukemia (T-ALL) is an aggressive cancer that is frequently associated with activating mutations in NOTCH1 and dysregulation of MYC. Here, we performed 2 complementary screens to identify FDA-approved drugs and drug-like small molecules with activity against T-ALL. We developed a zebrafish system to screen small molecules for toxic activity toward MYC-overexpressing thymocytes and used a human T-ALL cell line to screen for small molecules that synergize with Notch inhibitors. We identified the antipsychotic drug perphenazine in both screens due to its ability to induce apoptosis in fish, mouse, and human T-ALL cells. Using ligand-affinity chromatography coupled with mass spectrometry, we identified protein phosphatase 2A (PP2A) as a perphenazine target. T-ALL cell lines treated with perphenazine exhibited rapid dephosphorylation of multiple PP2A substrates and subsequent apoptosis. Moreover, shRNA knockdown of specific PP2A subunits attenuated perphenazine activity, indicating that PP2A mediates the drugs antileukemic activity. Finally, human T-ALLs treated with perphenazine exhibited suppressed cell growth and dephosphorylation of PP2A targets in vitro and in vivo. Our findings provide a mechanistic explanation for the recurring identification of phenothiazines as a class of drugs with anticancer effects. Furthermore, these data suggest that pharmacologic PP2A activation in T-ALL and other cancers driven by hyperphosphorylated PP2A substrates has therapeutic potential.


Blood | 2014

c-Myc inhibition prevents leukemia initiation in mice and impairs the growth of relapsed and induction failure pediatric T-ALL cells

Justine E. Roderick; Jessica Tesell; Leonard D. Shultz; Michael A. Brehm; Dale L. Greiner; Marian H. Harris; Lewis B. Silverman; Stephen E. Sallan; Alejandro Gutierrez; A. Thomas Look; Jun Qi; James E. Bradner; Michelle A. Kelliher

Although prognosis has improved for children with T-cell acute lymphoblastic leukemia (T-ALL), 20% to 30% of patients undergo induction failure (IF) or relapse. Leukemia-initiating cells (LICs) are hypothesized to be resistant to chemotherapy and to mediate relapse. We and others have shown that Notch1 directly regulates c-Myc, a known regulator of quiescence in stem and progenitor populations, leading us to examine whether c-Myc inhibition results in efficient targeting of T-ALL-initiating cells. We demonstrate that c-Myc suppression by small hairpin RNA or pharmacologic approaches prevents leukemia initiation in mice by eliminating LIC activity. Consistent with its anti-LIC activity in mice, treatment with the BET bromodomain BRD4 inhibitor JQ1 reduces C-MYC expression and inhibits the growth of relapsed and IF pediatric T-ALL samples in vitro. These findings demonstrate a critical role for c-Myc in LIC maintenance and provide evidence that MYC inhibition may be an effective therapy for relapsed/IF T-ALL patients.


Blood | 2010

Inactivation of LEF1 in T-cell acute lymphoblastic leukemia

Alejandro Gutierrez; Takaomi Sanda; Wenxue Ma; Jianhua Zhang; Ruta Grebliunaite; Suzanne E. Dahlberg; Donna Neuberg; Alexei Protopopov; Stuart S. Winter; Richard S. Larson; Michael J. Borowitz; Lewis B. Silverman; Lynda Chin; Stephen P. Hunger; Catriona Jamieson; Stephen E. Sallan; A. Thomas Look

To further unravel the molecular pathogenesis of T-cell acute lymphoblastic leukemia (T-ALL), we performed high-resolution array comparative genomic hybridization on diagnostic specimens from 47 children with T-ALL and identified monoallelic or biallelic LEF1 microdeletions in 11% (5 of 47) of these primary samples. An additional 7% (3 of 44) of the cases harbored nonsynonymous sequence alterations of LEF1, 2 of which produced premature stop codons. Gene expression microarrays showed increased expression of MYC and MYC targets in cases with LEF1 inactivation, as well as differentiation arrest at an early cortical stage of thymocyte development characterized by expression of CD1B, CD1E, and CD8, with absent CD34 expression. LEF1 inactivation was associated with a younger age at the time of T-ALL diagnosis, as well as activating NOTCH1 mutations, biallelic INK4a/ARF deletions, and PTEN loss-of-function mutations or activating mutations of PI3K or AKT genes. These cases generally lacked overexpression of the TAL1, HOX11, HOX11L2, or the HOXA cluster genes, which have been used to define separate molecular pathways leading to T-ALL. Our findings suggest that LEF1 inactivation is an important step in the molecular pathogenesis of T-ALL in a subset of young children.


Blood | 2012

Inactivation of ribosomal protein L22 promotes transformation by induction of the stemness factor, Lin28B

Shuyun Rao; Sang-Yun Lee; Alejandro Gutierrez; Jacqueline Perrigoue; Roshan J. Thapa; Zhigang Tu; John R. Jeffers; Michele Rhodes; Stephen J. Anderson; Tamas Oravecz; Stephen P. Hunger; Roman A. Timakhov; Rugang Zhang; Siddharth Balachandran; Gerard P. Zambetti; Joseph R. Testa; A. Thomas Look; David L. Wiest

Ribosomal protein (RP) mutations in diseases such as 5q- syndrome both disrupt hematopoiesis and increase the risk of developing hematologic malignancy. However, the mechanism by which RP mutations increase cancer risk has remained an important unanswered question. We show here that monoallelic, germline inactivation of the ribosomal protein L22 (Rpl22) predisposes T-lineage progenitors to transformation. Indeed, RPL22 was found to be inactivated in ∼ 10% of human T-acute lymphoblastic leukemias. Moreover, monoallelic loss of Rpl22 accelerates development of thymic lymphoma in both a mouse model of T-cell malignancy and in acute transformation assays in vitro. We show that Rpl22 inactivation enhances transformation potential through induction of the stemness factor, Lin28B. Our finding that Rpl22 inactivation promotes transformation by inducing expression of Lin28B provides the first insight into the mechanistic basis by which mutations in Rpl22, and perhaps some other RP genes, increases cancer risk.

Collaboration


Dive into the Alejandro Gutierrez's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Takaomi Sanda

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michelle A. Kelliher

University of Massachusetts Medical School

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Stephen P. Hunger

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Wenxue Ma

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge