Alejandro J. Moyano
National University of Cordoba
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Alejandro J. Moyano.
PLOS ONE | 2010
Sofía Feliziani; Adela M. Luján; Alejandro J. Moyano; Claudia Sola; José Luis Bocco; Patricia Montanaro; Liliana Fernández Canigia; Carlos E. Argaraña; Andrea M. Smania
Survival of Pseudomonas aeruginosa in cystic fibrosis (CF) chronic infections is based on a genetic adaptation process consisting of mutations in specific genes, which can produce advantageous phenotypic switches and ensure its persistence in the lung. Among these, mutations inactivating the regulators MucA (alginate biosynthesis), LasR (quorum sensing) and MexZ (multidrug-efflux pump MexXY) are the most frequently observed, with those inactivating the DNA mismatch repair system (MRS) being also highly prevalent in P. aeruginosa CF isolates, leading to hypermutator phenotypes that could contribute to this adaptive mutagenesis by virtue of an increased mutation rate. Here, we characterized the mutations found in the mucA, lasR, mexZ and MRS genes in P. aeruginosa isolates obtained from Argentinean CF patients, and analyzed the potential association of mucA, lasR and mexZ mutagenesis with MRS-deficiency and antibiotic resistance. Thus, 38 isolates from 26 chronically infected CF patients were characterized for their phenotypic traits, PFGE genotypic patterns, mutations in the mucA, lasR, mexZ, mutS and mutL gene coding sequences and antibiotic resistance profiles. The most frequently mutated gene was mexZ (79%), followed by mucA (63%) and lasR (39%) as well as a high prevalence (42%) of hypermutators being observed due to loss-of-function mutations in mutL (60%) followed by mutS (40%). Interestingly, mutational spectra were particular to each gene, suggesting that several mechanisms are responsible for mutations during chronic infection. However, no link could be established between hypermutability and mutagenesis in mucA, lasR and mexZ, indicating that MRS-deficiency was not involved in the acquisition of these mutations. Finally, although inactivation of mucA, lasR and mexZ has been previously shown to confer resistance/tolerance to antibiotics, only mutations in MRS genes could be related to an antibiotic resistance increase. These results help to unravel the mutational dynamics that lead to the adaptation of P. aeruginosa to the CF lung.
PLOS Genetics | 2014
Sofía Feliziani; Rasmus Lykke Marvig; Adela M. Luján; Alejandro J. Moyano; Julio A. Di Rienzo; Helle Krogh Johansen; Søren Molin; Andrea M. Smania
The advent of high-throughput sequencing techniques has made it possible to follow the genomic evolution of pathogenic bacteria by comparing longitudinally collected bacteria sampled from human hosts. Such studies in the context of chronic airway infections by Pseudomonas aeruginosa in cystic fibrosis (CF) patients have indicated high bacterial population diversity. Such diversity may be driven by hypermutability resulting from DNA mismatch repair system (MRS) deficiency, a common trait evolved by P. aeruginosa strains in CF infections. No studies to date have utilized whole-genome sequencing to investigate within-host population diversity or long-term evolution of mutators in CF airways. We sequenced the genomes of 13 and 14 isolates of P. aeruginosa mutator populations from an Argentinian and a Danish CF patient, respectively. Our collection of isolates spanned 6 and 20 years of patient infection history, respectively. We sequenced 11 isolates from a single sample from each patient to allow in-depth analysis of population diversity. Each patient was infected by clonal populations of bacteria that were dominated by mutators. The in vivo mutation rate of the populations was ∼100 SNPs/year–∼40-fold higher than rates in normo-mutable populations. Comparison of the genomes of 11 isolates from the same sample showed extensive within-patient genomic diversification; the populations were composed of different sub-lineages that had coexisted for many years since the initial colonization of the patient. Analysis of the mutations identified genes that underwent convergent evolution across lineages and sub-lineages, suggesting that the genes were targeted by mutation to optimize pathogenic fitness. Parallel evolution was observed in reduction of overall catabolic capacity of the populations. These findings are useful for understanding the evolution of pathogen populations and identifying new targets for control of chronic infections.
PLOS ONE | 2012
Claudia Sola; Hugo Paganini; Ana L. Egea; Alejandro J. Moyano; Analía Garnero; Ines Kevric; Catalina Culasso; Ana Vindel; Horacio Lopardo; José Luis Bocco
Background Community-associated methicillin-resistant Staphylococcus aureus-(CA-MRSA) strains have emerged in Argentina. We investigated the clinical and molecular evolution of community-onset MRSA infections (CO-MRSA) in children of Córdoba, Argentina, 2005–2008. Additionally, data from 2007 were compared with the epidemiology of these infections in other regions of the country. Methodology/Principal Findings Two datasets were used: i) lab-based prospective surveillance of CA-MRSA isolates from 3 Córdoba pediatric hospitals-(CBAH1-H3) in 2007–2008 (compared to previously published data of 2005) and ii) a sampling of CO-MRSA from a study involving both, healthcare-associated community-onset-(HACO) infections in children with risk-factors for healthcare-associated infections-(HRFs), and CA-MRSA infections in patients without HRFs detected in multiple centers of Argentina in 2007. Molecular typing was performed on the CA-MRSA-(n: 99) isolates from the CBAH1-H3-dataset and on the HACO-MRSA-(n: 51) and CA-MRSA-(n: 213) isolates from other regions. Between 2005–2008, the annual proportion of CA-MRSA/CA-S. aureus in Córdoba hospitals increased from 25% to 49%, P<0.01. Total CA-MRSA infections increased 3.6 fold-(5.1 to 18.6 cases/100,000 annual-visits, P<0.0001), associated with an important increase of invasive CA-MRSA infections-(8.5 fold). In all regions analyzed, a single genotype prevailed in both CA-MRSA (82%) and HACO-MRSA(57%), which showed pulsed-field-gel electrophoresis-(PFGE)-type-“I”, sequence-type-5-(ST5), SCCmec-type-IVa, spa-t311, and was positive for PVL. The second clone, pulsotype-N/ST30/CC30/SCCmecIVc/t019/PVL+, accounted for 11.5% of total CA-MRSA infections. Importantly, the first 4 isolates of Argentina belonging to South American-USA300 clone-(USA300/ST8/CC8/SCCmecIVc/t008/PVL+/ACME−) were detected. We also demonstrated that a HA-MRSA clone-(pulsotype-C/ST100/CC5) caused 2% and 10% of CA-MRSA and HACO-MRSA infections respectively and was associated with a SCCmec type closely related to SCCmecIV(2B&5). Conclusions/Significance The dissemination of epidemic MRSA clone, ST5-IV-PVL+ was the main cause of increasing staphylococcal community-onset infections in Argentinean children (2003–2008), conversely to other countries. The predominance of this clone, which has capacity to express the h-VISA phenotype, in healthcare-associated community-onset cases suggests that it has infiltrated into hospital-settings.
Molecular Microbiology | 2007
Alejandro J. Moyano; Adela M. Luján; Carlos E. Argaraña; Andrea M. Smania
Pseudomonas aeruginosa colonizes the respiratory tract of cystic fibrosis (CF) patients, where mutators along with mucoid variants emerge leading to chronic infection. Mucoid conversion generally involves mutations inactivating the mucA gene. This study correlates the frequency and nature of mucA mutations with the activity of factors determining the mutation rate, such as MutS and polymerase IV (Pol IV). Results show that: (i) the emergence frequency of mucoid variants was higher in isolates arising from mutS populations compared with the wild‐type strain; (ii) in both strains mucoid conversion occurred mainly by mucA mutations; (iii) however, the mutator strain harboured mostly mucA22 (a common allele in CF isolates), while the wild type showed a wider spectrum of mucA mutations with low incidence of mucA22; (iv) disruption of dinB in the wild‐type and mutS strains decreased drastically the emergence frequency of mucoid variants; (v) furthermore, the incidence of mucA mutations diminished in the mutS dinB double mutant strain which consisted only in mucA22; (vi) finally, the mucoid isolates obtained from the dinB strain showed an unexpected absence of mucA mutations. Taken together results demonstrate the implication of both MutS and Pol IV in determining mucA as the main target for conversion to mucoidy.
PLOS Genetics | 2014
Alejandro J. Moyano; Romina A. Tobares; Yanina Soledad Rizzi; Adriana R. Krapp; Juan A. Mondotte; José Luis Bocco; Maria-Carla Saleh; Néstor Carrillo; Andrea M. Smania
Long-chain flavodoxins, ubiquitous electron shuttles containing flavin mononucleotide (FMN) as prosthetic group, play an important protective role against reactive oxygen species (ROS) in various microorganisms. Pseudomonas aeruginosa is an opportunistic pathogen which frequently has to face ROS toxicity in the environment as well as within the host. We identified a single ORF, hereafter referred to as fldP (for flavodoxin from P . aeruginosa), displaying the highest similarity in length, sequence identity and predicted secondary structure with typical long-chain flavodoxins. The gene was cloned and expressed in Escherichia coli. The recombinant product (FldP) could bind FMN and exhibited flavodoxin activity in vitro. Expression of fldP in P. aeruginosa was induced by oxidative stress conditions through an OxyR-independent mechanism, and an fldP-null mutant accumulated higher intracellular ROS levels and exhibited decreased tolerance to H2O2 toxicity compared to wild-type siblings. The mutant phenotype could be complemented by expression of a cyanobacterial flavodoxin. Overexpression of FldP in a mutT-deficient P. aeruginosa strain decreased H2O2-induced cell death and the hypermutability caused by DNA oxidative damage. FldP contributed to the survival of P. aeruginosa within cultured mammalian macrophages and in infected Drosophila melanogaster, which led in turn to accelerated death of the flies. Interestingly, the fldP gene is present in some but not all P. aeruginosa strains, constituting a component of the P. aeruginosa accessory genome. It is located in a genomic island as part of a self-regulated polycistronic operon containing a suite of stress-associated genes. The collected results indicate that the fldP gene encodes a long-chain flavodoxin, which protects the cell from oxidative stress, thereby expanding the capabilities of P. aeruginosa to thrive in hostile environments.
PLOS ONE | 2009
Alejandro J. Moyano; Andrea M. Smania
In Pseudomonas aeruginosa, conversion to the mucoid phenotype marks the onset of an irreversible state of the infection in Cystic Fibrosis (CF) patients. The main pathway for mucoid conversion is mutagenesis of the mucA gene, frequently due to −1 bp deletions in a simple sequence repeat (SSR) of 5 Gs (G5-SSR426). We have recently observed that this mucA mutation is particularly accentuated in Mismatch Repair System (MRS)-deficient cells grown in vitro. Interestingly, previous reports have shown a high prevalence of hypermutable MRS-deficient strains occurring naturally in CF chronic lung infections. Here, we used mucA as a forward mutation model to systematically evaluate the role of G5-SSR426 in conversion to mucoidy in a MRS-deficient background, with this being the first analysis combining SSR-dependent localized hypermutability and the acquisition of a particular virulence/persistence trait in P. aeruginosa. In this study, mucA alleles were engineered with different contents of G:C SSRs, and tested for their effect on the mucoid conversion frequency and mucA mutational spectra in a mutS-deficient strain of P. aeruginosa. Importantly, deletion of G5-SSR426 severely reduced the emergence frequency of mucoid variants, with no preferential site of mutagenesis within mucA. Moreover, although mutagenesis in mucA was not totally removed, this was no longer the main pathway for mucoid conversion, suggesting that G5-SSR426 biased mutations towards mucA. Mutagenesis in mucA was restored by the addition of a new SSR (C6-SSR431), and even synergistically increased when G5-SSR426 and C6-SSR431 were present simultaneously, with the mucA mutations being restricted to −1 bp deletions within any of both G:C SSRs. These results confirm a critical role for G5-SSR426 enhancing the mutagenic process of mucA in MRS-deficient cells, and shed light on another mechanism, the SSR- localized hypermutability, contributing to mucoid conversion in P. aeruginosa.
PLOS ONE | 2013
Alejandro J. Moyano; Sofía Feliziani; Julio A. Di Rienzo; Andrea M. Smania
Pseudomonas aeruginosa is an opportunistic pathogen that chronically infects the airways of cystic fibrosis (CF) patients and undergoes a process of genetic adaptation based on mutagenesis. We evaluated the role of mononucleotide G:C and A:T simple sequence repeats (SSRs) in this adaptive process. An in silico survey of the genome sequences of 7 P. aeruginosa strains showed that mononucleotide G:C SSRs but not A:T SSRs were greatly under-represented in coding regions, suggesting a strong counterselection process for G:C SSRs with lengths >5 bp but not for A:T SSRs. A meta-analysis of published whole genome sequence data for a P. aeruginosa strain from a CF patient with chronic airway infection showed that G:C SSRs but not A:T SSRs were frequently mutated during the infection process through the insertion or deletion of one or more SSR subunits. The mutation tendency of G:C SSRs was length-dependent and increased exponentially as a function of SSR length. When this strain naturally became a stable Mismatch Repair System (MRS)-deficient mutator, the degree of increase of G:C SSRs mutations (5-fold) was much higher than that of other types of mutation (2.2-fold or less). Sequence analysis of several mutated genes reported for two different collections, both containing mutator and non-mutator strains of P. aeruginosa from CF chronic infections, showed that the proportion of G:C SSR mutations was significantly higher in mutators than in non-mutators, whereas no such difference was observed for A:T SSR mutations. Our findings, taken together, provide genome-scale evidences that under a MRS-deficient background, long G:C SSRs are able to stochastically bias mutagenic pathways by making the genes in which they are harbored more prone to mutation. The combination of MRS deficiency and virulence-related genes that contain long G:C SSRs is therefore a matter of concern in P. aeruginosa CF chronic infection.
Frontiers in Cellular and Infection Microbiology | 2018
Alejandro J. Moyano; Ana C. Racca; Gastón Soria; Hector A. Saka; Verónica Andreoli; Andrea M. Smania; Claudia Sola; José Luis Bocco
c-Jun is a member of the early mammalian transcriptional regulators belonging to the AP-1 family, which participates in a wide range of cellular processes such as proliferation, apoptosis, tumorigenesis, and differentiation. Despite its established role in cell survival upon stress, its participation in the stress response induced by bacterial infections has been poorly investigated. To study the potential role of c-Jun in this context we choose the widely studied α-toxin produced by Staphylococcus aureus, a pore-forming toxin that is a critical virulence factor in the pathogenesis of these bacteria. We analyzed the effect of α-toxin treatment in the activation, expression, and protein levels of c-Jun in A549 lung epithelial cells. Furthermore, we explored the role of c-Jun in the cellular fate after exposure to α-toxin. Our results show that staphylococcal α-toxin per se is able to activate c-Jun by inducing phosphorylation of its Serine 73 residue. Silencing of the JNK (c-Jun N-terminal Kinase) signaling pathway abrogated most of this activation. On the contrary, silencing of the ERK (Extracellular Signal-Regulated Kinase) pathway exacerbated this response. Intriguingly, while the exposure to α-toxin induced a marked increase in the levels of c-Jun transcripts, c-Jun protein levels noticeably decreased in the same time-frame as a consequence of active proteolytic degradation through the proteasome-dependent pathway. In addition, we established that c-Jun promoted cell survival when cells were challenged with α-toxin. Similarly, c-Jun phosphorylation was also induced in cells upon intoxication with the cytolysin produced by Vibrio cholerae in a JNK-dependent manner, suggesting that c-Jun-JNK axis would be a conserved responsive cellular pathway to pore-forming toxins. This study contributes to understanding the role of the multifaceted c-Jun proto-oncoprotein in cell response to bacterial pore-forming toxins, positioning it as a relevant component of the complex early machinery mounted to deal with staphylococcal infections.
Microbiology | 2007
Adela M. Luján; Alejandro J. Moyano; Ignacio Segura; Carlos E. Argaraña; Andrea M. Smania
Acta Botanica Mexicana | 2003
Alejandro J. Moyano; Graciela María Daniele