Alejandro J. Yáñez
Austral University of Chile
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Alejandro J. Yáñez.
Journal of Cellular Physiology | 2006
Alejandro S. Godoy; Viviana Ulloa; Federico Rodríguez; Karin Reinicke; Alejandro J. Yáñez; María de los Angeles García; Rodolfo A. Medina; Mónica Carrasco; Sofía Barberis; Tamara Castro; Fernando Martínez; Ximena Koch; Juan Carlos Vera; María Teresa Poblete; Carlos D. Figueroa; Bruno Peruzzo; Fernando Pérez; Francisco Nualart
It has been proposed that the enhanced metabolic activity of tumor cells is accompanied by an increased expression of facilitative hexose transporters (GLUTs). However, a previous immunohistochemical analysis of GLUT1 expression in 154 malignant human neoplasms failed to detect the GLUT1 isoform in 87 tumors. We used 146 normal human tissues and 215 tumor samples to reassess GLUT1 expression. A similar number of samples were used to compare the expression of GLUT2–6 and 9. The classical expression of GLUT1–5 in different normal human tissues was confirmed, however, we were unable to detect GLUT2 in human pancreatic islet cells. GLUT6 was principally detected in testis germinal cells and GLUT9 was localized in kidney, liver, heart, and adrenal. In tumor samples, GLUT1, 2, and 5 were the main transporters detected. GLUT1 was the most widely expressed transporter, however, 42% of the samples had very low‐to‐negative expression levels. GLUT2 was detected in 31% of the samples, being mainly expressed in breast, colon, and liver carcinoma. GLUT5 was detected in 27% of breast and colon adenocarcinoma, liver carcinoma, lymphomas, and testis seminoma samples. In situ RT‐PCR and ultrastructural immunohistochemistry confirmed GLUT5 expression in breast cancer. GLUT6 and 9 are not clearly over‐expressed in human cancer. The extensive expression of GLUT2 and 5 (glucose/fructose and fructose transporters, respectively) in malignant human tissues indicates that fructose may be a good energy substrate in tumor cells. Our functional data obtained in vitro in different tumor cells support this hypothesis. Additionally, these results suggest that fructose uptake could be used for positron emission tomography imaging and, may possibly represent a novel target for the development of therapeutic agents in different human cancers. J. Cell. Physiol.
Biochemical and Biophysical Research Communications | 1989
Carlos A. Pessot; Monica Brito; Jaime Figueroa; Ilona I. Concha; Alejandro J. Yáñez; Luis O. Burzio
The RNase-colloidal gold procedure for the ultrastructural localization of RNA was used for rat testis. Along with other structures, it was found that the testicular sperm nucleus was well stained. Similar labelling was observed in the nucleus of rat epididymal sperm and human sperm. The RNA was extracted from sperm and analyzed by electrophoresis on 10% polyacrylamide gel and 7 M urea. The electrophoretic profile revealed a complex set of bands ranging in size from tRNA to high molecular weight components. On the average, a content of about 0.1 pg of RNA per rat or human sperm was found.
Biology of Blood and Marrow Transplantation | 2009
Fernando Ezquer; Marcelo Ezquer; Valeska Simon; Fabian Pardo; Alejandro J. Yáñez; Daniel Carpio; Paulette Conget
Twenty-five to 40% of diabetic patients develop diabetic nephropathy, a clinical syndrome that comprises renal failure and increased risk of cardiovascular disease. It represents the major cause of chronic kidney disease and is associated with premature morbimortality of diabetic patients. Multipotent mesenchymal stromal cells (MSC) contribute to the regeneration of several organs, including acutely injured kidney. We sought to evaluate if MSC protect kidney function and structure when endovenously administered to mice with severe diabetes. A month after nonimmunologic diabetes induction by streptozotocin injection, C57BL/6 mice presented hyperglycemia, glycosuria, hypoinsulinemia, massive beta-pancreatic islet destruction, low albuminuria, but not renal histopathologic changes (DM mice). At this stage, one group of animals received the vehicle (untreated) and other group received 2 doses of 0.5 x 10(6) MSC/each (MSC-treated). Untreated DM mice gradually increased urinary albumin excretion and 4 months after diabetes onset, they reached values 15 times higher than normal animals. In contrast, MSC-treated DM mice maintained basal levels of albuminuria. Untreated DM mice had marked glomerular and tubular histopathologic changes (sclerosis, mesangial expansion, tubular dilatation, proteins cylinders, podocytes lost). However, MSC-treated mice showed only slight tubular dilatation. Observed renoprotection was not associated with an improvement in endocrine pancreas function in this animal model, because MSC-treated DM mice remained hyperglycemic and hypoinsulinemic, and maintained few remnant beta-pancreatic islets throughout the study period. To study MSC biodistribution, cells were isolated from isogenic mice that constitutively express GFP (MSC(GFP)) and endovenously administered to DM mice. Although at very low levels, donor cells were found in kidney of DM mice 3 month after transplantation. Presented preclinical results support MSC administration as a cell therapy strategy to prevent chronic renal diseases secondary to diabetes.
Journal of Cellular Physiology | 2003
Alejandro J. Yáñez; Francisco Nualart; Cristian Droppelmann; Romina Bertinat; Monica Brito; Ilona I. Concha; Juan C. Slebe
The importance of renal and hepatic gluconeogenesis in glucose homeostasis is well established, but the cellular localization of the key gluconeogenic enzymes liver fructose‐1,6‐bisphosphatase (FBPase) and cytosolic phosphoenolpyruvate carboxykinase (PEPCK) in these organs and the potential contribution of other tissues in this process has not been investigated in detail. Therefore, we analyzed the human tissue localization and cellular distribution of FBPase and PEPCK immunohistochemically. The localization analysis demonstrated that FBPase was expressed in many tissues that had not been previously reported to contain FBPase activity (e.g., prostate, ovary, suprarenal cortex, stomach, and heart). In some multicellular tissues, this enzyme was detected in specialized areas such as epithelial cells of the small intestine and prostate or lung pneumocytes II. Interestingly, FBPase was also present in pancreas and cortex cells of the adrenal gland, organs that are involved in the control of carbohydrate and lipid metabolism. Although similar results were obtained for PEPCK localization, different expression of this enzyme was observed in pancreas, adrenal gland, and pneumocytes type I. These results show that co‐expression of FBPase and PEPCK occurs not only in kidney and liver, but also in a variety of organs such as the small intestine, stomach, adrenal gland, testis, and prostate which might also contribute to gluconeogenesis. Our results are consistent with published data on the expression of glucose‐6‐phosphatase in the human small intestine, providing evidence that this organ may play an important role in the human glucose homeostasis. J. Cell. Physiol. 197: 189–197, 2003© 2003 Wiley‐Liss, Inc.
Diseases of Aquatic Organisms | 2012
Alejandro J. Yáñez; K. Valenzuela; H. Silva; J. Retamales; Alex Romero; Ricardo Enríquez; Jaime Figueroa; A. Claude; J. Gonzalez; Ruben Avendaño-Herrera; Juan G. Cárcamo
Piscirickettsiosis or salmonid rickettsial septicaemia (SRS) caused by Piscirickettsia salmonis constitutes one of the main problems in farmed salmonid and marine fishes. Since the first reports of the disease, it has been successfully isolated and maintained in eukaryotic cell--culture systems, but these systems are time-consuming, the media are costly, and eliminating heavily contaminated host cell debris is difficult. In this report, we describe a marine-based broth supplemented with L-cysteine, named AUSTRAL-SRS broth, that facilitates superior growth of P. salmonis strains. Strains reached an optical density of approximately 1.8 when absorbance was measured at 600 nm after 6 d incubation at 18°C. Several passages (n = 6) did not alter the culture kinetics. We report for the first time the purification of DNA, lipopolysaccharide (LPS) and whole membrane protein obtained from P. salmonis grown in this liquid medium, and thus provide a suitable platform to simplify the preparation of P. salmonis cells for genetic and serological studies. Moreover, the results of the cytopathic effect test showed that P. salmonis grown in AUSTRAL-SRS broth maintained their virulence properties, inducing apoptosis after 3 d. This makes the medium a good candidate for the successful growth of P. salmonis and an excellent basis for the development of low cost vaccines.
Biology of Reproduction | 2004
Jl Albarracín; J.M. Fernández-Novell; Joan Ballester; María Cecilia Rauch; Armando Quintero-Moreno; A. Peña; T. Mogas; T. Rigau; Alejandro J. Yáñez; Joan J. Guinovart; Juan C. Slebe; Ilona I. Concha; Joan E. Rodríguez-Gil
Abstract In vitro capacitation of dog spermatozoa in a medium without sugars and with lactate as the metabolic substrate (l-CCM) was accompanied by a progressive increase of intracellular glycogen during the first 2 h of incubation, which was followed by a subsequent decrease of glycogen levels after up to 4 h of incubation. Lactate from the medium is the source for the observed glycogen synthesis, as the presence of [14C]glycogen after the addition to l-CCM with [14C]lactate was demonstrated. The existence of functional gluconeogenesis in dog sperm was also sustained by the presence of key enzymes of this metabolic pathway, such as fructose 1,6-bisphophatase and aldolase B. On the other hand, glycogen metabolism from gluconeogenic sources was important in the maintenance of a correct in vitro fertilization after incubation in the l-CCM. This was demonstrated after the addition of phenylacetic acid (PAA) to l-CCM. In the presence of PAA, in vitro capacitation of dog spermatozoa suffered alterations, which translated into changes in capacitation functional markers, like the increase in the percentage of altered acrosomes, a distinct motion pattern, decrease or even disappearance of capacitation-induced tyrosine phosphorylation, and increased heterogeneity of the chlorotetracycline pattern in capacitated cells. Thus, this is the first report indicating the existence of a functional glyconeogenesis in mammalian spermatozoa. Moreover, gluconeogenesis-linked glycogen metabolism seems to be of importance in the maintenance of a correct in vitro capacitation in dog sperm in the absence of hexoses in the medium.
Fems Microbiology Letters | 2016
Rodrigo Sandoval; Cristian Oliver; Sharin Valdivia; Karla Valenzuela; Ronie E. Haro; Patricio Sánchez; Víctor H. Olavarría; Paulina Valenzuela; Ruben Avendaño-Herrera; Alex Romero; Juan G. Cárcamo; Jaime Figueroa; Alejandro J. Yáñez
Piscirickettsia salmonis is a fastidious intracellular pathogen responsible for high mortality rates in farmed salmonids, with serious economic consequences for the Chilean aquaculture industry. Oxytetracycline and florfenicol are the most frequently used antibiotics against P. salmonis, but routine use could contribute to drug resistance. This study identified differentiated florfenicol susceptibilities in two P. salmonis strains, LF-89 and AUSTRAL-005. The less susceptible isolate, AUSTRAL-005, also showed a high ethidium bromide efflux rate, indicating a higher activity of general efflux pump genes than LF-89. The P. salmonis genome presented resistance nodulation division (RND) family members, a family containing typical multidrug resistance-related efflux pumps in Gram-negative bacteria. Additionally, efflux pump acrAB genes were overexpressed in AUSTRAL-005 following exposure to the tolerated maximal concentration of florfenicol, in contrast to LF-89. These results indicate that tolerated maximum concentrations of florfenicol can modulate RND gene expression and increase efflux pump activity. We propose that the acrAB efflux pump is essential for P. salmonis survival at critical florfenicol concentrations and for the generation of antibiotic-resistant bacterial strains.
Journal of Cellular Physiology | 2005
Alejandro J. Yáñez; Heide C. Ludwig; Romina Bertinat; Carlos Spichiger; Rodrigo Gatica; Gustavo Berlien; Oscar Leon; Monica Brito; Ilona I. Concha; Juan C. Slebe
The expression of aldolase A and B isoenzyme transcripts was confirmed by RT‐PCR in rat kidney and their cell distribution was compared with characteristic enzymes of the gluconeogenic and glycolytic metabolic pathway: fructose‐1,6‐bisphosphatase (FBPase), phosphoenol pyruvate carboxykinase (PEPCK), and pyruvate kinase (PK). We detected aldolase A isoenzyme in the thin limb and collecting ducts of the medulla and in the distal tubules and glomerula of the cortex. The same pattern of distribution was found for PK, but not for aldolase B, PEPCK, and FBPase. In addition, co‐localization studies confirmed that aldolase B, FBPase, and PEPCK are expressed in the same proximal cells. This segregated cell distribution of aldolase A and B with key glycolytic and gluconeogenic enzymes, respectively, suggests that these aldolase isoenzymes participate in different metabolic pathways. In order to test if FBPase interacts with aldolase B, FBPase was immobilized on agarose and subjected to binding experiments. The results show that only aldolase B is specifically bound to FBPase and that this interaction was specifically disrupted by 60 μM Fru‐1,6‐P2. These data indicate the presence of a modulated enzyme–enzyme interaction between FBPase and isoenzyme B. They affirm that in kidney, aldolase B specifically participates, along the gluconeogenic pathway and aldolase A in glycolysis.
FEBS Letters | 2009
H. Roa; C. Gajardo; E. Troncoso; V. Fuentealba; C. Escudero; Alejandro J. Yáñez; Luis Sobrevia; Marçal Pastor-Anglada; Claudia Quezada; R. San Martín
Up regulation of the transforming growth factor‐beta 1 (TGF‐β1) axis has been recognized as a pathogenic event for progression of glomerulosclerosis in diabetic nephropathy. We demonstrate that glomeruli isolated from diabetic rats accumulate up to sixfold more extracellular adenosine than normal rats. Both decreased nucleoside uptake activity by the equilibrative nucleoside transporter 1 and increased AMP hydrolysis contribute to raise extracellular adenosine. Ex vivo assays indicate that activation of the low affinity adenosine A2B receptor subtype (A2BAR) mediates TGF‐β1 release from glomeruli of diabetic rats, a pathogenic event that could support progression of glomerulopathy when the bioavailability of adenosine is increased.
Journal of Cellular Biochemistry | 2013
Rodrigo Gatica; Romina Bertinat; Pamela Silva; Daniel Carpio; María José Ramírez; Juan C. Slebe; Rody San Martín; Francisco Nualart; José María Campistol; Carme Caelles; Alejandro J. Yáñez
Diabetes is the major cause of end stage renal disease, and tubular alterations are now considered to participate in the development and progression of diabetic nephropathy (DN). Here, we report for the first time that expression of the insulin receptor (IR) in human kidney is altered during diabetes. We detected a strong expression in proximal and distal tubules from human renal cortex, and a significant reduction in type 2 diabetic patients. Moreover, isolated proximal tubules from type 1 diabetic rat kidney showed a similar response, supporting its use as an excellent model for in vitro study of human DN. IR protein down‐regulation was paralleled in proximal and distal tubules from diabetic rats, but prominent in proximal tubules from diabetic patients. A target of renal insulin signaling, the gluconeogenic enzyme phosphoenolpyruvate carboxykinase (PEPCK), showed increased expression and activity, and localization in compartments near the apical membrane of proximal tubules, which was correlated with activation of the GSK3β kinase in this specific renal structure in the diabetic condition. Thus, expression of IR protein in proximal tubules from type 1 and type 2 diabetic kidney indicates that this is a common regulatory mechanism which is altered in DN, triggering enhanced gluconeogenesis regardless the etiology of the disease. J. Cell. Biochem. 114: 639–649, 2013.