Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alejandro P. Adam is active.

Publication


Featured researches published by Alejandro P. Adam.


Cancer Research | 2006

Functional Coupling of p38-Induced Up-regulation of BiP and Activation of RNA-Dependent Protein Kinase–Like Endoplasmic Reticulum Kinase to Drug Resistance of Dormant Carcinoma Cells

Aparna C. Ranganathan; Lin Zhang; Alejandro P. Adam; Julio A. Aguirre-Ghiso

It has been proposed that occult, disseminated metastatic cells are refractory to chemotherapy due to lack of proliferation. We have shown that p38 activation induces dormancy of squamous carcinoma cells. We now show that p38 signaling in these cells activates a prosurvival mechanism via the up-regulation of the endoplasmic reticulum (ER) chaperone BiP and increased activation of the ER stress-activated eukaryotic translation initiator factor 2alpha kinase RNA-dependent protein kinase-like ER kinase (PERK) allowing dormant tumor cells to resist drug toxicity. RNA interference and dominant-negative expression studies revealed that both BiP and PERK signaling promote survival and drug resistance of dormant cells, and that BiP up-regulation prevents Bax activation. We propose that stress-dependent activation of p38 via BiP up-regulation and PERK activation protects dormant tumor cells from stress insults, such as chemotherapy.


Journal of Biological Chemistry | 2010

SRC-induced tyrosine phosphorylation of VE-cadherin is not sufficient to decrease barrier function of endothelial monolayers

Alejandro P. Adam; Amy Sharenko; Kevin Pumiglia; Peter A. Vincent

Activation of Src family kinases (SFK) and the subsequent phosphorylation of VE-cadherin have been proposed as major regulatory steps leading to increases in vascular permeability in response to inflammatory mediators and growth factors. To investigate Src signaling in the absence of parallel signaling pathways initiated by growth factors or inflammatory mediators, we activated Src and SFKs by expression of dominant negative Csk, expression of constitutively active Src, or knockdown of Csk. Activation of SFK by overexpression of dominant negative Csk induced VE-cadherin phosphorylation at tyrosines 658, 685, and 731. However, dominant negative Csk expression was unable to induce changes in the monolayer permeability. In contrast, expression of constitutively active Src decreased barrier function and promoted VE-cadherin phosphorylation on tyrosines 658 and 731, although the increase in VE-cadherin phosphorylation preceded the increase in permeability by 4–6 h. Csk knockdown induced VE-cadherin phosphorylation at sites 658 and 731 but did not induce a loss in barrier function. Co-immunoprecipitation and immunofluorescence studies suggest that phosphorylation of those sites did not impair VE-cadherin ability to bind p120 and β-catenin or the ability of these proteins to localize at the plasma membrane. Taken together, our data show that Src-induced tyrosine phosphorylation of VE-cadherin is not sufficient to promote an increase in endothelial cell monolayer permeability and suggest that signaling leading to changes in vascular permeability in response to inflammatory mediators or growth factors may require VE-cadherin tyrosine phosphorylation concurrently with other signaling pathways to promote loss of barrier function.


Cancer Research | 2009

Computational Identification of a p38SAPK-Regulated Transcription Factor Network Required for Tumor Cell Quiescence

Alejandro P. Adam; Ajish D. George; Denis M. Schewe; Paloma Bragado; Bibiana V. Iglesias; Aparna C. Ranganathan; Antonis Kourtidis; Douglas S. Conklin; Julio A. Aguirre-Ghiso

The stress-activated kinase p38 plays key roles in tumor suppression and induction of tumor cell dormancy. However, the mechanisms behind these functions remain poorly understood. Using computational tools, we identified a transcription factor (TF) network regulated by p38alpha/beta and required for human squamous carcinoma cell quiescence in vivo. We found that p38 transcriptionally regulates a core network of 46 genes that includes 16 TFs. Activation of p38 induced the expression of the TFs p53 and BHLHB3, while inhibiting c-Jun and FoxM1 expression. Furthermore, induction of p53 by p38 was dependent on c-Jun down-regulation. Accordingly, RNAi down-regulation of BHLHB3 or p53 interrupted tumor cell quiescence, while down-regulation of c-Jun or FoxM1 or overexpression of BHLHB3 in malignant cells mimicked the onset of quiescence. Our results identify components of the regulatory mechanisms driving p38-induced cancer cell quiescence. These may regulate dormancy of residual disease that usually precedes the onset of metastasis in many cancers.


Cell Cycle | 2006

Opposing Roles of Mitogenic and Stress Signaling Pathways in the Induction of Cancer Dormancy

Aparna C. Ranganathan; Alejandro P. Adam; Julio A. Aguirre-Ghiso

Cancer dormancy is a poorly understood stage of cancer progression. However, the ability to control this step of the disease offers novel therapeutic opportunities. Here we summarize recent findings that implicate the extracellular matrix and adhesion receptor signaling in the escape or induction of tumor dormancy. We further review evidence suggesting that imbalances in the activity ratio of ERK to p38 signaling may determine the fate (i.e. tumorigenicity vs. dormancy) of different carcinoma cells. Special attention is placed on the mechanisms that p38 signaling regulates during the induction of dormancy and how modulation of these pathways may offer a therapeutic opportunity. We also review evidence for a novel drug-resistance mechanism in dormant tumor cells that when blocked may enable killing of dormant tumor cells. Finally, we explore the notion that dormancy of tumor cells may be the result of a selective adaptive response that allows disseminated tumor cells to pause their growth and cope with stress signaling imposed by dissemination and/or treatment until growth can be restored.


PLOS ONE | 2007

Inhibition of Proliferation by PERK Regulates Mammary Acinar Morphogenesis and Tumor Formation

Sharon J. Sequeira; Aparna C. Ranganathan; Alejandro P. Adam; Bibiana V. Iglesias; Eduardo F. Farias; Julio A. Aguirre-Ghiso

Endoplasmic reticulum (ER) stress signaling can be mediated by the ER kinase PERK, which phosphorylates its substrate eIF2α. This in turn, results in translational repression and the activation of downstream programs that can limit cell growth through cell cycle arrest and/or apoptosis. These responses can also be initiated by perturbations in cell adhesion. Thus, we hypothesized that adhesion-dependent regulation of PERK signaling might determine cell fate. We tested this hypothesis in a model of mammary acini development, a morphogenetic process regulated in part by adhesion signaling. Here we report a novel role for PERK in limiting MCF10A mammary epithelial cell proliferation during acinar morphogenesis in 3D Matrigel culture as well as in preventing mammary tumor formation in vivo. We show that loss of adhesion to a suitable substratum induces PERK-dependent phosphorylation of eIF2α and selective upregulation of ATF4 and GADD153. Further, inhibition of endogenous PERK signaling during acinar morphogenesis, using two dominant-negative PERK mutants (PERK-ΔC or PERK-K618A), does not affect apoptosis but results instead in hyper-proliferative and enlarged lumen-filled acini, devoid of proper architecture. This phenotype correlated with an adhesion-dependent increase in translation initiation, Ki67 staining and upregulation of Laminin-5, ErbB1 and ErbB2 expression. More importantly, the MCF10A cells expressing PERKΔC, but not a vector control, were tumorigenic in vivo upon orthotopic implantation in denuded mouse mammary fat pads. Our results reveal that the PERK pathway is responsive to adhesion-regulated signals and that it is essential for proper acinar morphogenesis and in preventing mammary tumor formation. The possibility that deficiencies in PERK signaling could lead to hyperproliferation of the mammary epithelium and increase the likelihood of tumor formation, is of significance to the understanding of breast cancer.


Science Signaling | 2013

STIM1 controls endothelial barrier function independently of Orai1 and Ca2+ entry.

Arti V. Shinde; Rajender K. Motiani; Xuexin Zhang; Iskandar F. Abdullaev; Alejandro P. Adam; José C. González-Cobos; Wei Zhang; Khalid Matrougui; Peter A. Vincent; Mohamed Trebak

The calcium sensor STIM1 disrupts the endothelial barrier by coupling the thrombin receptor to the actin cytoskeleton. Breaking the Endothelial Barrier Thrombin is an endogenous ligand that induces vasoconstriction and can also disrupt the barrier formed by blood vessel endothelial cells, which leads to increased vascular permeability and leakage of plasma into the tissue. Using the thrombin-induced decrease in transendothelial resistance in two types of cultured endothelial cells as a model of barrier disruption, Shinde et al. found that the calcium-responsive protein STIM1 coupled the thrombin receptor to activation of the guanosine triphosphatase RhoA and rearrangement of the actin cytoskeleton, which contribute to loss of cell-cell contact. Surprisingly, this role did not involve various cation channels that are targets of STIM1. How STIM1 couples the thrombin receptor to RhoA remains an open question. Endothelial barrier function is critical for tissue fluid homeostasis, and its disruption contributes to various pathologies, including inflammation and sepsis. Thrombin is an endogenous agonist that impairs endothelial barrier function. We showed that the thrombin-induced decrease in transendothelial electric resistance of cultured human endothelial cells required the endoplasmic reticulum–localized, calcium-sensing protein stromal interacting molecule 1 (STIM1), but was independent of Ca2+ entry across the plasma membrane and the Ca2+ release–activated Ca2+ channel protein Orai1, which is the target of STIM1 in the store-operated calcium entry pathway. We found that STIM1 coupled the thrombin receptor to activation of the guanosine triphosphatase RhoA, stimulation of myosin light chain phosphorylation, formation of actin stress fibers, and loss of cell-cell adhesion. Thus, STIM1 functions in pathways that are dependent on and independent of Ca2+ entry.


Cancer Biology & Therapy | 2006

Tumor cell dormancy induced by p38SAPK and ER-stress signaling: an adaptive advantage for metastatic cells?

Aparna C. Ranganathan; Alejandro P. Adam; Lin Zhang; Julio A. Aguirre-Ghiso

The mechanisms that determine whether a tumor cell that has disseminated to a secondary site will resume growth immediately, die or enter a state of dormancy are poorly understood. Although tumor dormancy represents a common clinical finding, studying the mechanisms behind this stage of tumor progression has been challenging. Furthermore, it is thought that dormant tumor cells are refractory to chemotherapy due to their lack of proliferation. However, whether this is the only reason for their chemo-resistance remains to be proven. In this review we summarize recent findings that provide a mechanistic explanation about how stress signaling through the p38SAPK pathway and ER-stress signaling may coordinate the induction of growth arrest and drug-resistance in a model of squamous carcinoma dormancy. We further discuss how dormant tumor cells may enter this stage to adapt to strenuous conditions that do not favor immediate growth after dissemination. Finally, we propose that this response may recapitulate an evolutionary conserved program of life-span extension through adaptation and tolerance to stress.


American Journal of Physiology-cell Physiology | 2012

p120-Catenin prevents neutrophil transmigration independently of RhoA inhibition by impairing Src dependent VE-cadherin phosphorylation

Pilar Alcaide; Roberta Martinelli; Gail Newton; Marcie R. Williams; Alejandro P. Adam; Peter A. Vincent; Francis W. Luscinskas

Leukocyte transendothelial migration (TEM) is regulated by several signaling pathways including Src family kinases (SFK) and the small RhoGTPases. Previous studies have shown that vascular endothelial-cadherin (VE-cad) forms a complex with β-,γ-, and p120-catenins and this complex disassociates to form a transient gap during leukocyte TEM. Additionally, p120-catenin (p120-1A) overexpression in human umbilical vein endothelial cells (HUVEC) stabilizes VE-cad surface expression, prevents tyrosine phosphorylation of VE-cad, and inhibits leukocyte TEM. Based on reports showing that p120 overexpression in fibroblasts or epithelial cells inhibits RhoA and activates Rac and Cdc42 GTPases, and on other reports showing that RhoA activation in endothelial cells is necessary for leukocyte TEM, we reasoned that p120 overexpression inhibited TEM through inhibition of RhoA. To test this idea, we overexpressed a mutant p120 isoform, p120-4A, which does not interact with RhoA. p120-4A colocalized with VE-cad in HUVEC junctions and enhanced VE-cad surface expression, similar to overexpression of p120-1A. Interestingly, overexpression of either p120-4A or p120-1A dramatically blocked TEM, and overexpression of p120-1A in HUVEC did not affect RhoA basal activity or activation of RhoA and Rac induced by thrombin or ICAM-1 crosslinking. In contrast, biochemical studies revealed that overexpression of p120-1A reduced activated pY416-Src association with VE-cad. In summary, p120 overexpression inhibits neutrophil TEM independently of an effect on RhoA or Rac and instead blocks TEM by preventing VE-cad tyrosine phosphorylation and association of active Src with the VE-cad complex.


Cancer Research | 2010

Activation of endothelial ras signaling bypasses senescence and causes abnormal vascular morphogenesis.

Anshika Bajaj; Qingxia Zheng; Alejandro P. Adam; Peter A. Vincent; Kevin Pumiglia

Angiogenesis is crucial for embryogenesis, reproduction, and wound healing and is a critical determinant of tumor growth and metastasis. The multifunctional signal transducer Ras is a proto-oncogene and frequently becomes mutated in a variety of human cancers, including angiosarcomas. Regulation of Ras is important for endothelial cell function and angiogenesis. Hyperactivation of Ras is linked with oncogene-induced senescence in many cell types. Given links between vascular malformations and angiosarcoma with activated Ras signaling, we sought to determine the consequence of sustained Ras activation on endothelial cell function. We find that sustained Ras activation in primary endothelial cells leads to prolonged activation of progrowth signaling, accompanied by a senescence bypass, enhanced proliferation, autonomous growth, and increased survival. Moreover, Ras severely compromises the ability of these cells to organize into vascular structures, instead promoting formation of planar endothelial sheets. This abnormal phenotype is regulated by phosphoinositide 3-kinase signaling, highlighting the therapeutic potential of agents targeting this axis in dealing with vascular morphogenic disorders and vascular normalization of tumors.


Mediators of Inflammation | 2015

Regulation of Endothelial Adherens Junctions by Tyrosine Phosphorylation

Alejandro P. Adam

Endothelial cells form a semipermeable, regulated barrier that limits the passage of fluid, small molecules, and leukocytes between the bloodstream and the surrounding tissues. The adherens junction, a major mechanism of intercellular adhesion, is comprised of transmembrane cadherins forming homotypic interactions between adjacent cells and associated cytoplasmic catenins linking the cadherins to the cytoskeleton. Inflammatory conditions promote the disassembly of the adherens junction and a loss of intercellular adhesion, creating openings or gaps in the endothelium through which small molecules diffuse and leukocytes transmigrate. Tyrosine kinase signaling has emerged as a central regulator of the inflammatory response, partly through direct phosphorylation and dephosphorylation of the adherens junction components. This review discusses the findings that support and those that argue against a direct effect of cadherin and catenin phosphorylation in the disassembly of the adherens junction. Recent findings indicate a complex interaction between kinases, phosphatases, and the adherens junction components that allow a fine regulation of the endothelial permeability to small molecules, leukocyte migration, and barrier resealing.

Collaboration


Dive into the Alejandro P. Adam's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Julio A. Aguirre-Ghiso

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yao Wei Lu

Albany Medical College

View shared research outputs
Researchain Logo
Decentralizing Knowledge