Alejandro Russo
Chalmers University of Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Alejandro Russo.
ieee computer security foundations symposium | 2010
Alejandro Russo; Andrei Sabelfeld
This paper seeks to answer fundamental questions about trade-offs between static and dynamic security analysis. It has been previously shown that flow-sensitive static information-flow analysis is a natural generalization of flow-insensitive static analysis, which allows accepting more secure programs. It has been also shown that sound purely dynamic information-flow enforcement is more permissive than static analysis in the flow-insensitive case. We argue that the step from flow-insensitive to flow-sensitive is fundamentally limited for purely dynamic information-flow controls. We prove impossibility of a sound purely dynamic information-flow monitor that accepts programs certified by a classical flow-sensitive static analysis. A side implication is impossibility of permissive dynamic instrumented security semantics for information flow, which guides us to uncover an unsound semantics from the literature. We present a general framework for hybrid mechanisms that is parameterized in the static part and in the reaction method of the enforcement (stop, suppress, or rewrite) and give security guarantees with respect to termination-insensitive noninterference for a simple language with output.
international andrei ershov memorial conference on perspectives of system informatics | 2009
Andrei Sabelfeld; Alejandro Russo
Historically, dynamic techniques are the pioneers of the area of information flow in the 70s. In their seminal work, Denning and Denning suggest a static alternative for information-flow analysis. Following this work, the 90s see the domination of static techniques for information flow. The common wisdom appears to be that dynamic approaches are not a good match for security since monitoring a single path misses public side effects that could have happened in other paths. Dynamic techniques for information flow are on the rise again, driven by the need for permissiveness in todays dynamic applications. But they still involve nontrivial static checks for leaks related to control flow. This paper demonstrates that it is possible for a purely dynamic enforcement to be as secure as Denning-style static information-flow analysis, despite the common wisdom. We do have the trade-off that static techniques have benefits of reducing runtime overhead, and dynamic techniques have the benefits of permissiveness (this, for example, is of particular importance in dynamic applications, where freshly generated code is evaluated). But on the security side, we show for a simple imperative language that both Denning-style analysis and dynamic enforcement have the same assurance: termination-insensitive noninterference.
symposium/workshop on haskell | 2012
Deian Stefan; Alejandro Russo; John C. Mitchell; David Mazières
We describe a new, dynamic, floating-label approach to language-based information flow control, and present an implementation in Haskell. A labeled IO monad, LIO, keeps track of a current label and permits restricted access to IO functionality, while ensuring that the current label exceeds the labels of all data observed and restricts what can be modified. Unlike other language-based work, LIO also bounds the current label with a current clearance that provides a form of discretionary access control. In addition, programs may encapsulate and pass around the results of computations with different labels. We give precise semantics and prove confidentiality and integrity properties of the system.
symposium/workshop on haskell | 2008
Alejandro Russo; Koen Claessen; John Hughes
Protecting confidentiality of data has become increasingly important for computing systems. Information-flow techniques have been developed over the years to achieve that purpose, leading to special-purpose languages that guarantee information-flow security in programs. However, rather than producing a new language from scratch, information-flow security can also be provided as a library. This has been done previously in Haskell using the arrow framework. In this paper, we show that arrows are not necessary to design such libraries and that a less general notion, namely monads, is sufficient to achieve the same goals. We present a monadic library to provide information-flow security for Haskell programs. The library introduces mechanisms to protect confidentiality of data for pure computations, that we then easily, and modularly, extend to include dealing with side-effects. We also present combinators to dynamically enforce different declassification policies when release of information is required in a controlled manner. It is possible to enforce policies related to what, by whom, and when information is released or a combination of them. The well-known concept of monads together with the light-weight characteristic of our approach makes the library suitable to build applications where confidentiality of data is an issue.
european symposium on research in computer security | 2009
Alejandro Russo; Andrei Sabelfeld; Andrey Chudnov
This paper explores the problem of tracking information flow in dynamic tree structures. Motivated by the problem of manipulating the Document Object Model (DOM) trees by browser-run client-side scripts, we address the dynamic nature of interactions via tree structures. We present a runtime enforcement mechanism that monitors this interaction and prevents a range of attacks, some of them missed by previous approaches, that exploit the tree structure in order to transfer sensitive information. We formalize our approach for a simple language with DOM-like tree operations and show that the monitor prevents scripts from disclosing secrets.
ieee computer security foundations symposium | 2006
Alejandro Russo; Andrei Sabelfeld
The problem of information flow in multithreaded programs remains an important open challenge. Existing approaches to specifying and enforcing information flow security often suffer from over-restrictiveness, relying on non-standard semantics, lack of compositionality, inability to handle dynamic threads, scheduler dependence, and efficiency overhead for code that results from security-enforcing transformations. This paper suggests a remedy for some of these shortcomings by developing a novel treatment of the interaction between threads and the scheduler. As a result, we present a permissive noninterference-like security specification and a compositional security type system that provably enforces this specification. The type system guarantees security for a wide class of schedulers and provides a flexible and efficiency-friendly treatment of dynamic threads
automation of software test | 2011
Michal Palka; Koen Claessen; Alejandro Russo; John Hughes
This paper considers random testing of a compiler, using randomly generated programs as inputs, and comparing their behaviour with and without optimisation. Since the generated programs must compile, then we need to take into account syntax, scope rules, and type checking during our random generation. Doing so, while attaining a good distribution of test data, proves surprisingly subtle; the main contribution of this paper is a workable solution to this problem. We used it to generate typed functions on lists, which we compiled using the Glasgow Haskell compiler, a mature production quality Haskell compiler. After around 20,000 tests we triggered an optimiser failure, and automatically simplified it to a program with just a few constructs.
international conference on functional programming | 2012
Deian Stefan; Alejandro Russo; Pablo Buiras; Amit Levy; John C. Mitchell; David Mazières
When termination of a program is observable by an adversary, confidential information may be leaked by terminating accordingly. While this termination covert channel has limited bandwidth for sequential programs, it is a more dangerous source of information leakage in concurrent settings. We address concurrent termination and timing channels by presenting a dynamic information-flow control system that mitigates and eliminates these channels while allowing termination and timing to depend on secret values. Intuitively, we leverage concurrency by placing such potentially sensitive actions in separate threads. While termination and timing of these threads may expose secret values, our system requires any thread observing these properties to raise its information-flow label accordingly, preventing leaks to lower-labeled contexts. We implement this approach in a Haskell library and demonstrate its applicability by building a web server that uses information-flow control to restrict untrusted web applications.
ieee computer security foundations symposium | 2009
Alejandro Russo; Andrei Sabelfeld
Timeout mechanisms are a useful feature for web applications. However, these mechanisms need to be used with care because, if used as-is, they are vulnerable to timing attacks. This paper focuses on internal timing attacks, a particularly dangerous class of timing attacks, where the attacker needs no access to a clock. In the context of client-side web application security, we present JavaScript-based exploits against the timeout mechanism of the DOM (document object model), supported by the modern browsers. Our experimental findings reveal rather liberal choices for the timeout semantics by different browsers and motivate the need for a general security solution. We propose a foundation for such a solution in the form of a runtime monitor. We illustrate for a simple language that, while being more permissive than a typical static analysis, the monitor enforces termination-insensitive noninterference.
european symposium on research in computer security | 2013
Deian Stefan; Pablo Buiras; Edward Z. Yang; Amit Levy; David Terei; Alejandro Russo; David Mazières
Information flow control allows untrusted code to access sensitive and trustworthy information without leaking this information. However, the presence of covert channels subverts this security mechanism, allowing processes to communicate information in violation of IFC policies. In this paper, we show that concurrent deterministic IFC systems that use time-based scheduling are vulnerable to a cache-based internal timing channel. We demonstrate this vulnerability with a concrete attack on Hails, one particular IFC web framework. To eliminate this internal timing channel, we implement instruction-based scheduling, a new kind of scheduler that is indifferent to timing perturbations from underlying hardware components, such as the cache, TLB, and CPU buses. We show this scheduler is secure against cache-based internal timing attacks for applications using a single CPU. To show the feasibility of instruction-based scheduling, we have implemented a version of Hails that uses the CPU retired-instruction counters available on commodity Intel and AMD hardware. We show that instruction-based scheduling does not impose significant performance penalties. Additionally, we formally prove that our modifications to Hails’ underlying IFC system preserve non-interference in the presence of caches.