Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alejandro Sanchez-Flores is active.

Publication


Featured researches published by Alejandro Sanchez-Flores.


Nature | 2013

The genomes of four tapeworm species reveal adaptations to parasitism.

Isheng J. Tsai; Magdalena Zarowiecki; Nancy Holroyd; Alejandro Garciarrubio; Alejandro Sanchez-Flores; Karen Brooks; Alan Tracey; Raúl J. Bobes; Gladis Fragoso; Edda Sciutto; Martin Aslett; Helen Beasley; Hayley M. Bennett; Jianping Cai; Federico Camicia; Richard M. Clark; Marcela Cucher; Nishadi De Silva; Tim A. Day; Peter Deplazes; Karel Estrada; Cecilia Fernández; Peter W. H. Holland; Junling Hou; Songnian Hu; Thomas Huckvale; Stacy S. Hung; Laura Kamenetzky; Jacqueline A. Keane; Ferenc Kiss

Tapeworms (Cestoda) cause neglected diseases that can be fatal and are difficult to treat, owing to inefficient drugs. Here we present an analysis of tapeworm genome sequences using the human-infective species Echinococcus multilocularis, E. granulosus, Taenia solium and the laboratory model Hymenolepis microstoma as examples. The 115- to 141-megabase genomes offer insights into the evolution of parasitism. Synteny is maintained with distantly related blood flukes but we find extreme losses of genes and pathways that are ubiquitous in other animals, including 34 homeobox families and several determinants of stem cell fate. Tapeworms have specialized detoxification pathways, metabolism that is finely tuned to rely on nutrients scavenged from their hosts, and species-specific expansions of non-canonical heat shock proteins and families of known antigens. We identify new potential drug targets, including some on which existing pharmaceuticals may act. The genomes provide a rich resource to underpin the development of urgently needed treatments and control.


PLOS Pathogens | 2011

Genomic insights into the origin of parasitism in the emerging plant pathogen Bursaphelenchus xylophilus.

Taisei Kikuchi; James A. Cotton; Jonathan J. Dalzell; Koichi Hasegawa; Natsumi Kanzaki; Paul McVeigh; Takuma Takanashi; Isheng J. Tsai; Samuel A. Assefa; Peter J. A. Cock; Thomas D. Otto; Martin Hunt; Adam J. Reid; Alejandro Sanchez-Flores; Kazuko Tsuchihara; Toshiro Yokoi; Mattias C. Larsson; Johji Miwa; Aaron G. Maule; Norio Sahashi; John T. Jones; Matthew Berriman

Bursaphelenchus xylophilus is the nematode responsible for a devastating epidemic of pine wilt disease in Asia and Europe, and represents a recent, independent origin of plant parasitism in nematodes, ecologically and taxonomically distinct from other nematodes for which genomic data is available. As well as being an important pathogen, the B. xylophilus genome thus provides a unique opportunity to study the evolution and mechanism of plant parasitism. Here, we present a high-quality draft genome sequence from an inbred line of B. xylophilus, and use this to investigate the biological basis of its complex ecology which combines fungal feeding, plant parasitic and insect-associated stages. We focus particularly on putative parasitism genes as well as those linked to other key biological processes and demonstrate that B. xylophilus is well endowed with RNA interference effectors, peptidergic neurotransmitters (including the first description of ins genes in a parasite) stress response and developmental genes and has a contracted set of chemosensory receptors. B. xylophilus has the largest number of digestive proteases known for any nematode and displays expanded families of lysosome pathway genes, ABC transporters and cytochrome P450 pathway genes. This expansion in digestive and detoxification proteins may reflect the unusual diversity in foods it exploits and environments it encounters during its life cycle. In addition, B. xylophilus possesses a unique complement of plant cell wall modifying proteins acquired by horizontal gene transfer, underscoring the impact of this process on the evolution of plant parasitism by nematodes. Together with the lack of proteins homologous to effectors from other plant parasitic nematodes, this confirms the distinctive molecular basis of plant parasitism in the Bursaphelenchus lineage. The genome sequence of B. xylophilus adds to the diversity of genomic data for nematodes, and will be an important resource in understanding the biology of this unusual parasite.


Nature | 2012

High-throughput decoding of antitrypanosomal drug efficacy and resistance

Sam Alsford; Sabine Eckert; Nicola Baker; Lucy Glover; Alejandro Sanchez-Flores; Ka Fai Leung; Daniel J. Turner; Mark C. Field; Matthew Berriman; David Horn

The concept of disease-specific chemotherapy was developed a century ago. Dyes and arsenical compounds that displayed selectivity against trypanosomes were central to this work, and the drugs that emerged remain in use for treating human African trypanosomiasis (HAT). The importance of understanding the mechanisms underlying selective drug action and resistance for the development of improved HAT therapies has been recognized, but these mechanisms have remained largely unknown. Here we use all five current HAT drugs for genome-scale RNA interference target sequencing (RIT-seq) screens in Trypanosoma brucei, revealing the transporters, organelles, enzymes and metabolic pathways that function to facilitate antitrypanosomal drug action. RIT-seq profiling identifies both known drug importers and the only known pro-drug activator, and links more than fifty additional genes to drug action. A bloodstream stage-specific invariant surface glycoprotein (ISG75) family mediates suramin uptake, and the AP1 adaptin complex, lysosomal proteases and major lysosomal transmembrane protein, as well as spermidine and N-acetylglucosamine biosynthesis, all contribute to suramin action. Further screens link ubiquinone availability to nitro-drug action, plasma membrane P-type H+-ATPases to pentamidine action, and trypanothione and several putative kinases to melarsoprol action. We also demonstrate a major role for aquaglyceroporins in pentamidine and melarsoprol cross-resistance. These advances in our understanding of mechanisms of antitrypanosomal drug efficacy and resistance will aid the rational design of new therapies and help to combat drug resistance, and provide unprecedented molecular insight into the mode of action of antitrypanosomal drugs.


Genome Research | 2014

Genomic analysis of the causative agents of coccidiosis in domestic chickens

Adam J. Reid; Damer P. Blake; Hifzur Rahman Ansari; Karen J. Billington; Hilary P. Browne; Josephine M. Bryant; Matthew Dunn; Stacy S. Hung; Fumiya Kawahara; Diego Miranda-Saavedra; Tareq M. Malas; Tobias Mourier; Hardeep Naghra; Mridul Nair; Thomas D. Otto; Neil D. Rawlings; Pierre Rivailler; Alejandro Sanchez-Flores; Mandy Sanders; Chandra Subramaniam; Yea-Ling Tay; Yong Woo; Xikun Wu; Bart Barrell; Paul H. Dear; Christian Doerig; Arthur Gruber; Alasdair Ivens; John Parkinson; Marie-Adele Rajandream

Global production of chickens has trebled in the past two decades and they are now the most important source of dietary animal protein worldwide. Chickens are subject to many infectious diseases that reduce their performance and productivity. Coccidiosis, caused by apicomplexan protozoa of the genus Eimeria, is one of the most important poultry diseases. Understanding the biology of Eimeria parasites underpins development of new drugs and vaccines needed to improve global food security. We have produced annotated genome sequences of all seven species of Eimeria that infect domestic chickens, which reveal the full extent of previously described repeat-rich and repeat-poor regions and show that these parasites possess the most repeat-rich proteomes ever described. Furthermore, while no other apicomplexan has been found to possess retrotransposons, Eimeria is home to a family of chromoviruses. Analysis of Eimeria genes involved in basic biology and host-parasite interaction highlights adaptations to a relatively simple developmental life cycle and a complex array of co-expressed surface proteins involved in host cell binding.


Nature Genetics | 2016

The genomic basis of parasitism in the Strongyloides clade of nematodes

Vicky L. Hunt; Isheng J. Tsai; Avril Coghlan; Adam J. Reid; Nancy Holroyd; Bernardo J. Foth; Alan Tracey; James A. Cotton; Eleanor Stanley; Helen Beasley; Hayley M. Bennett; Karen Brooks; Bhavana Harsha; Rei Kajitani; Arpita Kulkarni; Dorothee Harbecke; Eiji Nagayasu; Sarah Nichol; Yoshitoshi Ogura; Michael A. Quail; Nadine P. Randle; Dong Xia; Norbert W. Brattig; Hanns Soblik; Diogo M Ribeiro; Alejandro Sanchez-Flores; Tetsuya Hayashi; Takehiko Itoh; Dee R. Denver; Warwick N. Grant

Soil-transmitted nematodes, including the Strongyloides genus, cause one of the most prevalent neglected tropical diseases. Here we compare the genomes of four Strongyloides species, including the human pathogen Strongyloides stercoralis, and their close relatives that are facultatively parasitic (Parastrongyloides trichosuri) and free-living (Rhabditophanes sp. KR3021). A significant paralogous expansion of key gene families—families encoding astacin-like and SCP/TAPS proteins—is associated with the evolution of parasitism in this clade. Exploiting the unique Strongyloides life cycle, we compare the transcriptomes of the parasitic and free-living stages and find that these same gene families are upregulated in the parasitic stages, underscoring their role in nematode parasitism.


Frontiers in Genetics | 2015

The Road to Metagenomics: From Microbiology to DNA Sequencing Technologies and Bioinformatics

Alejandra Escobar-Zepeda; Arturo Vera-Ponce de León; Alejandro Sanchez-Flores

The study of microorganisms that pervade each and every part of this planet has encountered many challenges through time such as the discovery of unknown organisms and the understanding of how they interact with their environment. The aim of this review is to take the reader along the timeline and major milestones that led us to modern metagenomics. This new and thriving area is likely to be an important contributor to solve different problems. The transition from classical microbiology to modern metagenomics studies has required the development of new branches of knowledge and specialization. Here, we will review how the availability of high-throughput sequencing technologies has transformed microbiology and bioinformatics and how to tackle the inherent computational challenges that arise from the DNA sequencing revolution. New computational methods are constantly developed to collect, process, and extract useful biological information from a variety of samples and complex datasets, but metagenomics needs the integration of several of these computational methods. Despite the level of specialization needed in bioinformatics, it is important that life-scientists have a good understanding of it for a correct experimental design, which allows them to reveal the information in a metagenome.


Scientific Reports | 2015

Novel transcriptome assembly and improved annotation of the whiteleg shrimp (Litopenaeus vannamei), a dominant crustacean in global seafood mariculture

Noushin Ghaffari; Alejandro Sanchez-Flores; Ryan Doan; Karina D. Garcia-Orozco; Patricia L. Chen; Adrián Ochoa-Leyva; Alonso A. Lopez-Zavala; J. Salvador Carrasco; Chris Hong; Luis G. Brieba; Enrique Rudiño-Piñera; Philip D. Blood; J. E. Sawyer; Charles D. Johnson; Scott V. Dindot; Rogerio R. Sotelo-Mundo; Michael F. Criscitiello

We present a new transcriptome assembly of the Pacific whiteleg shrimp (Litopenaeus vannamei), the species most farmed for human consumption. Its functional annotation, a substantial improvement over previous ones, is provided freely. RNA-Seq with Illumina HiSeq technology was used to analyze samples extracted from shrimp abdominal muscle, hepatopancreas, gills and pleopods. We used the Trinity and Trinotate software suites for transcriptome assembly and annotation, respectively. The quality of this assembly and the affiliated targeted homology searches greatly enrich the curated transcripts currently available in public databases for this species. Comparison with the model arthropod Daphnia allows some insights into defining characteristics of decapod crustaceans. This large-scale gene discovery gives the broadest depth yet to the annotated transcriptome of this important species and should be of value to ongoing genomics and immunogenetic resistance studies in this shrimp of paramount global economic importance.


Food Microbiology | 2016

Metagenomic analysis of a Mexican ripened cheese reveals a unique complex microbiota.

Alejandra Escobar-Zepeda; Alejandro Sanchez-Flores; Maricarmen Quirasco Baruch

Cotija cheese is a Mexican handcrafted product made from raw cow milk whose ripening process occurs spontaneously and, presumably, it is influenced by environmental conditions. Its sensory characteristics and safety are probably the result of the balance between microbial populations and their metabolic capacity. In this work, we studied the dominance and richness of the bacteria in the Cotija cheese microbiome, as well as their metabolic potential by high-throughput sequencing. By the analysis of 16S ribosomal sequences, it was found that this metagenome is composed mainly of three dominant genera: Lactobacillus, Leuconostoc and Weissella, and more than 500 of non-dominant genera grouped in 31 phyla of both bacteria and archaea. The analysis of single-copy marker genes reported a similar result for dominant genera, although with greater resolution that reached the species level. Pathogenic bacteria such as Salmonella, Listeria monocytogenes, Brucella or Mycobacterium were not found. The Cotija cheese microbiome has the metabolic capacity for the synthesis of a wide range of flavor compounds, mainly involved with the metabolism of branched chain amino acids and free fatty acids. Genes associated with bacteriocin production and immunity were also found. Arguably, this is one of the most diverse metagenomes among the microbial communities related to fermented products.


BMC Medical Genomics | 2015

The DNA methylation drift of the atherosclerotic aorta increases with lesion progression

María del Pilar Valencia-Morales; Silvio Zaina; Holger Heyn; F. Javier Carmona; Nuray Varol; Sergi Sayols; Enric Condom; José Ramírez-Ruz; Antonio Gomez; Sebastian Moran; Gertrud Lund; Dalia Rodríguez-Ríos; Gladys López-González; Magda Ramírez-Nava; Carmen de la Rocha; Alejandro Sanchez-Flores; Manel Esteller

BackgroundAtherosclerosis severity-independent alterations in DNA methylation, a reversible and highly regulated DNA modification, have been detected in aortic atheromas, thus supporting the hypothesis that epigenetic mechanisms participate in the pathogenesis of atherosclerosis. One yet unaddressed issue is whether the progression of atherosclerosis is associated with an increase in DNA methylation drift in the vascular tissue. The purpose of the study was to identify CpG methylation profiles that vary with the progression of atherosclerosis in the human aorta.MethodsWe interrogated a set of donor-matched atherosclerotic and normal aortic samples ranging from histological grade III to VII, with a high-density (>450,000 CpG sites) DNA methylation microarray.ResultsWe detected a correlation between histological grade and intra-pair differential methylation for 1,985 autosomal CpGs, the vast majority of which drifted towards hypermethylation with lesion progression. The identified CpG loci map to genes that are regulated by known critical transcription factors involved in atherosclerosis and participate in inflammatory and immune responses. Functional relevance was corroborated by crossing the DNA methylation profiles with expression data obtained in the same human aorta sample set, by a transcriptome-wide analysis of murine atherosclerotic aortas and from available public databases.ConclusionsOur work identifies for the first time atherosclerosis progression-specific DNA methylation profiles in the vascular tissue. These findings provide potential novel markers of lesion severity and targets to counteract the progression of the atheroma.


Molecular & Cellular Proteomics | 2014

Secreted Proteomes of Different Developmental Stages of the Gastrointestinal Nematode Nippostrongylus brasiliensis

Javier Sotillo; Alejandro Sanchez-Flores; Cinzia Cantacessi; Yvonne Harcus; Darren Pickering; Tiffany Bouchery; Mali Camberis; Shiau-Choot Tang; Paul Giacomin; Jason Mulvenna; Makedonka Mitreva; Matthew Berriman; Graham LeGros; Rick M. Maizels; Alex Loukas

Hookworms infect more than 700 million people worldwide and cause more morbidity than most other human parasitic infections. Nippostrongylus brasiliensis (the rat hookworm) has been used as an experimental model for human hookworm because of its similar life cycle and ease of maintenance in laboratory rodents. Adult N. brasiliensis, like the human hookworm, lives in the intestine of the host and releases excretory/secretory products (ESP), which represent the major host-parasite interface. We performed a comparative proteomic analysis of infective larval (L3) and adult worm stages of N. brasiliensis to gain insights into the molecular bases of host-parasite relationships and determine whether N. brasiliensis could indeed serve as an appropriate model for studying human hookworm infections. Proteomic data were matched to a transcriptomic database assembled from 245,874,892 Illumina reads from different developmental stages (eggs, L3, L4, and adult) of N. brasiliensis yielding∼18,426 unigenes with 39,063 possible isoform transcripts. From this analysis, 313 proteins were identified from ESPs by LC-MS/MS—52 in the L3 and 261 in the adult worm. Most of the proteins identified in the study were stage-specific (only 13 proteins were shared by both stages); in particular, two families of proteins—astacin metalloproteases and CAP-domain containing SCP/TAPS—were highly represented in both L3 and adult ESP. These protein families are present in most nematode groups, and where studied, appear to play roles in larval migration and evasion of the hosts immune response. Phylogenetic analyses of defined protein families and global gene similarity analyses showed that N. brasiliensis has a greater degree of conservation with human hookworm than other model nematodes examined. These findings validate the use of N. brasiliensis as a suitable parasite for the study of human hookworm infections in a tractable animal model.

Collaboration


Dive into the Alejandro Sanchez-Flores's collaboration.

Top Co-Authors

Avatar

Karel Estrada

National Autonomous University of Mexico

View shared research outputs
Top Co-Authors

Avatar

Alejandra Escobar-Zepeda

National Autonomous University of Mexico

View shared research outputs
Top Co-Authors

Avatar

Matthew Berriman

Wellcome Trust Sanger Institute

View shared research outputs
Top Co-Authors

Avatar

Lorenzo Segovia

National Autonomous University of Mexico

View shared research outputs
Top Co-Authors

Avatar

Luciana Raggi

Universidad Michoacana de San Nicolás de Hidalgo

View shared research outputs
Top Co-Authors

Avatar

Ricardo Grande

National Autonomous University of Mexico

View shared research outputs
Top Co-Authors

Avatar

Adrián Ochoa-Leyva

National Autonomous University of Mexico

View shared research outputs
Top Co-Authors

Avatar

Arturo Vera-Ponce de León

National Autonomous University of Mexico

View shared research outputs
Top Co-Authors

Avatar

Leticia Vega-Alvarado

National Autonomous University of Mexico

View shared research outputs
Top Co-Authors

Avatar

Myrna Olvera-García

National Autonomous University of Mexico

View shared research outputs
Researchain Logo
Decentralizing Knowledge