Alejandro Tres
University of Zaragoza
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Alejandro Tres.
Nature Genetics | 2007
Julius Gudmundsson; Patrick Sulem; Andrei Manolescu; Laufey T Amundadottir; Daniel F. Gudbjartsson; Agnar Helgason; Thorunn Rafnar; Jon Thor Bergthorsson; Bjarni A. Agnarsson; Adam Baker; Asgeir Sigurdsson; Kristrun R. Benediktsdottir; Margret Jakobsdottir; Jianfeng Xu; Thorarinn Blondal; Jelena Kostic; Jielin Sun; Shyamali Ghosh; Simon N. Stacey; Magali Mouy; Jona Saemundsdottir; Valgerdur M. Backman; Kristleifur Kristjansson; Alejandro Tres; Alan W. Partin; Marjo T Albers-Akkers; Javier Godino-Ivan Marcos; Patrick C. Walsh; Dorine W. Swinkels; Sebastian Navarrete
Prostate cancer is the most prevalent noncutaneous cancer in males in developed regions, with African American men having among the highest worldwide incidence and mortality rates. Here we report a second genetic variant in the 8q24 region that, in conjunction with another variant we recently discovered, accounts for about 11%–13% of prostate cancer cases in individuals of European descent and 31% of cases in African Americans. We made the current discovery through a genome-wide association scan of 1,453 affected Icelandic individuals and 3,064 controls using the Illumina HumanHap300 BeadChip followed by four replication studies. A key step in the discovery was the construction of a 14-SNP haplotype that efficiently tags a relatively uncommon (2%–4%) susceptibility variant in individuals of European descent that happens to be very common (∼42%) in African Americans. The newly identified variant shows a stronger association with affected individuals who have an earlier age at diagnosis.
Nature Genetics | 2007
Simon N. Stacey; Andrei Manolescu; Patrick Sulem; Thorunn Rafnar; Julius Gudmundsson; Sigurjon A. Gudjonsson; Gisli Masson; Margret Jakobsdottir; Steinunn Thorlacius; Agnar Helgason; Katja K. Aben; Luc J Strobbe; Marjo T Albers-Akkers; Dorine W. Swinkels; Brian E. Henderson; Laurence N. Kolonel; Loic Le Marchand; Esther Millastre; Raquel Andres; Javier Godino; María Dolores García-Prats; Eduardo Polo; Alejandro Tres; Magali Mouy; Jona Saemundsdottir; Valgerdur M. Backman; Larus J. Gudmundsson; Kristleifur Kristjansson; Jon Thor Bergthorsson; Jelena Kostic
Familial clustering studies indicate that breast cancer risk has a substantial genetic component. To identify new breast cancer risk variants, we genotyped approximately 300,000 SNPs in 1,600 Icelandic individuals with breast cancer and 11,563 controls using the Illumina Hap300 platform. We then tested selected SNPs in five replication sample sets. Overall, we studied 4,554 affected individuals and 17,577 controls. Two SNPs consistently associated with breast cancer: ∼25% of individuals of European descent are homozygous for allele A of rs13387042 on chromosome 2q35 and have an estimated 1.44-fold greater risk than noncarriers, and for allele T of rs3803662 on 16q12, about 7% are homozygous and have a 1.64-fold greater risk. Risk from both alleles was confined to estrogen receptor–positive tumors. At present, no genes have been identified in the linkage disequilibrium block containing rs13387042. rs3803662 is near the 5′ end of TNRC9 , a high mobility group chromatin–associated protein whose expression is implicated in breast cancer metastasis to bone.
Nature Genetics | 2007
Julius Gudmundsson; Patrick Sulem; Valgerdur Steinthorsdottir; Jon Thor Bergthorsson; Gudmar Thorleifsson; Andrei Manolescu; Thorunn Rafnar; Daniel F. Gudbjartsson; Bjarni A. Agnarsson; Adam Baker; Asgeir Sigurdsson; Kristrun R. Benediktsdottir; Margret Jakobsdottir; Thorarinn Blondal; Simon N. Stacey; Agnar Helgason; Steinunn Gunnarsdottir; Adalheidur Olafsdottir; Kari T. Kristinsson; Birgitta Birgisdottir; Shyamali Ghosh; Steinunn Thorlacius; Dana Magnusdottir; Gerdur Stefansdottir; Kristleifur Kristjansson; Yu Z. Bagger; Robert L. Wilensky; Muredach P. Reilly; Andrew D. Morris; Charlotte H. Kimber
We performed a genome-wide association scan to search for sequence variants conferring risk of prostate cancer using 1,501 Icelandic men with prostate cancer and 11,290 controls. Follow-up studies involving three additional case-control groups replicated an association of two variants on chromosome 17 with the disease. These two variants, 33 Mb apart, fall within a region previously implicated by family-based linkage studies on prostate cancer. The risks conferred by these variants are moderate individually (allele odds ratio of about 1.20), but because they are common, their joint population attributable risk is substantial. One of the variants is in TCF2 (HNF1β), a gene known to be mutated in individuals with maturity-onset diabetes of the young type 5. Results from eight case-control groups, including one West African and one Chinese, demonstrate that this variant confers protection against type 2 diabetes.
Nature Genetics | 2009
Thorunn Rafnar; Patrick Sulem; Simon N. Stacey; Frank Geller; Julius Gudmundsson; Asgeir Sigurdsson; Margret Jakobsdottir; Hafdis T. Helgadottir; Steinunn Thorlacius; Katja K. Aben; Thorarinn Blondal; Thorgeir E. Thorgeirsson; Gudmar Thorleifsson; Kristleifur Kristjansson; Kristin Thorisdottir; Rafn Ragnarsson; Bardur Sigurgeirsson; Halla Skuladottir; Tomas Gudbjartsson; Helgi J. Ísaksson; Gudmundur V. Einarsson; Kristrun R. Benediktsdottir; Bjarni A. Agnarsson; Karl Olafsson; Anna Salvarsdottir; Hjordis Bjarnason; Margret Asgeirsdottir; Kari T. Kristinsson; Sigurborg Matthiasdottir; Steinunn G Sveinsdottir
The common sequence variants that have recently been associated with cancer risk are particular to a single cancer type or at most two. Following up on our genome-wide scan of basal cell carcinoma, we found that rs401681[C] on chromosome 5p15.33 satisfied our threshold for genome-wide significance (OR = 1.25, P = 3.7 × 10−12). We tested rs401681 for association with 16 additional cancer types in over 30,000 cancer cases and 45,000 controls and found association with lung cancer (OR = 1.15, P = 7.2 × 10−8) and urinary bladder, prostate and cervix cancer (ORs = 1.07−1.31, all P < 4 × 10−4). However, rs401681[C] seems to confer protection against cutaneous melanoma (OR = 0.88, P = 8.0 × 10−4). Notably, most of these cancer types have a strong environmental component to their risk. Investigation of the region led us to rs2736098[A], which showed stronger association with some cancer types. However, neither variant could fully account for the association of the other. rs2736098 corresponds to A305A in the telomerase reverse transcriptase (TERT) protein and rs401681 is in an intron of the CLPTM1L gene.
Nature Genetics | 2008
Simon N. Stacey; Andrei Manolescu; Patrick Sulem; Steinunn Thorlacius; Sigurjon A. Gudjonsson; Gudbjorn F. Jonsson; Margret Jakobsdottir; Jon Thor Bergthorsson; Julius Gudmundsson; Katja K. Aben; Luc J Strobbe; Dorine W. Swinkels; K. C.Anton van Engelenburg; Brian E. Henderson; Laurence N. Kolonel; Loic Le Marchand; Esther Millastre; Raquel Andres; Berta Saez; Julio Lambea; Javier Godino; Eduardo Polo; Alejandro Tres; Simone Picelli; Johanna Rantala; Sara Margolin; Thorvaldur Jonsson; Helgi Sigurdsson; Thora Jonsdottir; Jón Hrafnkelsson
We carried out a genome-wide association study of breast cancer predisposition with replication and refinement studies involving 6,145 cases and 33,016 controls and identified two SNPs (rs4415084 and rs10941679) on 5p12 that confer risk, preferentially for estrogen receptor (ER)-positive tumors (OR = 1.27, P = 2.5 × 10−12 for rs10941679). The nearest gene, MRPS30, was previously implicated in apoptosis, ER-positive tumors and favorable prognosis. A recently reported signal in FGFR2 was also found to associate specifically with ER-positive breast cancer.
Journal of Pineal Research | 2014
J. García; Laura López-Pingarrón; Priscilla Almeida-Souza; Alejandro Tres; P. Escudero; Francisco A. García-Gil; Dun Xian Tan; Russel J. Reiter; Jose Manuel Ramirez; Milagros Bernal-Pérez
Free radicals generated within subcellular compartments damage macromolecules which lead to severe structural changes and functional alterations of cellular organelles. A manifestation of free radical injury to biological membranes is the process of lipid peroxidation, an autooxidative chain reaction in which polyunsaturated fatty acids in the membrane are the substrate. There is considerable evidence that damage to polyunsaturated fatty acids tends to reduce membrane fluidity. However, adequate levels of fluidity are essential for the proper functioning of biological membranes. Thus, there is considerable interest in antioxidant molecules which are able to stabilize membranes because of their protective effects against lipid peroxidation. Melatonin is an indoleamine that modulates a wide variety of endocrine, neural and immune functions. Over the last two decades, intensive research has proven this molecule, as well as its metabolites, to possess substantial antioxidant activity. In addition to their ability to scavenge several reactive oxygen and nitrogen species, melatonin increases the activity of the glutathione redox enzymes, that is, glutathione peroxidase and reductase, as well as other antioxidant enzymes. These beneficial effects of melatonin are more significant because of its small molecular size and its amphipathic behaviour, which facilitates ease of melatonin penetration into every subcellular compartment. In the present work, we review the current information related to the beneficial effects of melatonin in maintaining the fluidity of biological membranes against free radical attack, and further, we discuss its implications for ageing and disease.
Oncologist | 2011
David Miles; Henri Roché; Miguel Martin; Timothy J. Perren; David Cameron; John A. Glaspy; David Dodwell; Joanne Parker; Jose I. Mayordomo; Alejandro Tres; James L. Murray; Nuhad K. Ibrahim
PURPOSE This double-blind, randomized, phase III clinical trial evaluated time to progression (TTP) and overall survival in women with metastatic breast cancer (MBC) who received sialyl-TN (STn) keyhole limpet hemocyanin (KLH) vaccine. Secondary endpoints included vaccine safety and immune response. EXPERIMENTAL DESIGN The study population consisted of 1,028 women with MBC across 126 centers who had previously received chemotherapy and had had either a complete or a partial response or no disease progression. All women received one-time i.v. cyclophosphamide (300 mg/m(2)) 3 days before s.c. injection of 100 μg STn-KLH plus adjuvant (treatment group) or 100 μg KLH plus adjuvant (control group) at weeks 0, 2, 5, and 9. Subsequently, STn-KLH without adjuvant or KLH without adjuvant was then administered monthly for 4 months, and then quarterly until disease progression, without cyclophosphamide. RESULTS STn-KLH vaccine was well tolerated; patients had mild to moderate injection-site reactions and reversible flu-like symptoms. Week-12 antibody testing revealed high specific IgG titers and a high rate of IgM-to-IgG seroconversion; the median IgG titers in STn-KLH recipients were 320 (anti-ovine submaxillary mucin) and 20,480 (anti-STn), with no detectable antimucin antibodies in the control group. The TTP was 3.4 months in the treatment group and 3.0 months in the control group. The median survival times were 23.1 months and 22.3 months, respectively. CONCLUSIONS Although STn-KLH was well tolerated in this largest to date metastatic breast cancer vaccine trial, no overall benefit in TTP or survival was observed. Lessons were learned for future vaccine study designs.
Nanotechnology | 2011
I. Marcos-Campos; Laura Asín; T. E. Torres; C. Marquina; Alejandro Tres; M. R. Ibarra; Gerardo F. Goya
In this work, the capability of primary, monocyte-derived dendritic cells (DCs) to uptake iron oxide magnetic nanoparticles (MNPs) is assessed and a strategy to induce selective cell death in these MNP-loaded DCs using external alternating magnetic fields (AMFs) is reported. No significant decrease in the cell viability of MNP-loaded DCs, compared to the control samples, was observed after five days of culture. The number of MNPs incorporated into the cytoplasm was measured by magnetometry, which confirmed that 1-5 pg of the particles were uploaded per cell. The intracellular distribution of these MNPs, assessed by transmission electron microscopy, was found to be primarily inside the endosomic structures. These cells were then subjected to an AMF for 30 min and the viability of the blank DCs (i.e. without MNPs), which were used as control samples, remained essentially unaffected. However, a remarkable decrease of viability from approximately 90% to 2-5% of DCs previously loaded with MNPs was observed after the same 30 min exposure to an AMF. The same results were obtained using MNPs having either positive (NH(2)(+)) or negative (COOH(-)) surface functional groups. In spite of the massive cell death induced by application of AMF to MNP-loaded DCs, the number of incorporated magnetic particles did not raise the temperature of the cell culture. Clear morphological changes at the cell structure after magnetic field application were observed using scanning electron microscopy. Therefore, local damage produced by the MNPs could be the main mechanism for the selective cell death of MNP-loaded DCs under an AMF. Based on the ability of these cells to evade the reticuloendothelial system, these complexes combined with an AMF should be considered as a potentially powerful tool for tumour therapy.
Cell Death and Disease | 2013
Laura Asín; Gerardo F. Goya; Alejandro Tres; M. R. Ibarra
Magnetic hyperthermia (MH) is based on the use of magnetic nanoparticles (MNPs) to selectively increase the temperature of MNP-loaded target tissues when applying an alternating magnetic field (AMF) in the range of radiofrequency. To date, all MH research has focused on heat generation in an attempt to elucidate the mechanisms for the death of MNP-loaded cells submitted to AMF. However, recent in vitro studies have demonstrated the feasibility of inducing dramatic cell death without increasing the macroscopic temperature during AMF exposure. Here, we show that the cell death observed following AMF exposure, specifically that of MNP-loaded dendritic cells (DCs) in culture, was caused by the release of toxic agents into the cell culture supernatants and not due to a macroscopic temperature increase. We performed MH in vitro experiments to demonstrate that the supernatant of the cell culture following AMF exposure was highly toxic when added to control unloaded DCs, as this treatment led to nearly 100% cell death. Therefore, our results demonstrate that heat is not the only agent responsible for triggering cell death following MH treatment. This finding offers new perspectives for the use of DCs as the proverbial Trojan horse to vectorise MNPs to the target tumour area and these results further support the use of DCs as therapeutic agents against cancer when submitted to AMF. Furthermore, this discovery may help in understanding the mechanism of cell death mediated by exposure to AMF.
Cell Biology International | 2008
Gerardo F. Goya; I. Marcos-Campos; Rodrigo Fernández-Pacheco; B. Sáez; Javier Godino; L. Asín; J. Lambea; P. Tabuenca; Jose I. Mayordomo; Luis Larrad; M. R. Ibarra; Alejandro Tres
We have investigated the internalization of magnetic nanoparticles (NPs) into dendritic cells (DCs) in order to assess both the final location of the particles and the viability of the cultured cells. The particles, consisting of a metallic iron core covered with carbon, showed no toxic effects on the DCs and had no effect in their viability. We found that mature DCs are able to incorporate magnetic nanoparticles in a range of size from 10 nm to ca. 200 nm, after 24 h of incubation. We describe a method to separate cells loaded with NPs, and analyze the resulting material by electron microscopy and magnetic measurements. It is found that NPs are internalized in lysosomes, providing a large magnetic signal. Our results suggest that loading DCs with properly functionalized magnetic NPs could be a promising strategy for improved vectorization in cancer diagnosis and treatment.