Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alejandro Úbeda is active.

Publication


Featured researches published by Alejandro Úbeda.


Bioelectromagnetics | 1996

Magnetic fields at resonant conditions for the hydrogen ion affect neurite outgrowth in PC-12 cells: A test of the ion parametric resonance model

María Ángeles Trillo; Alejandro Úbeda; J. P. Blanchard; Dennis E. House; Carl F. Blackman

PC-12 cells primed with nerve growth factor (NGF) were exposed to sinusoidal extremely-low-frequency (ELF) magnetic fields (MFs) selected to test the predictions of the ion parametric resonance (IPR) model under resonance conditions for a single ion (hydrogen). We examined the field effects on the neurite outgrowth (NO) induced by NGF using three different combinations of flux densities of the parallel components of the AC MF (Bac) and the static MF (Bdc). The first test examined the NO response in cells exposed to 45 Hz at a Bdc of 2.96 microT with resonant conditions for H+ according to the model. The Bac values ranged from 0.29 to 4.11 microT root-mean-square (rms). In the second test, the MF effects at off-resonance conditions (i.e., no biologically significant ion at resonance) were examined using the frequency of 45 Hz with a Bdc of 1.97 microT and covering a Bac range between 0.79 and 2.05 microT rms. In the third test, the AC frequency was changed to 30 Hz with the subsequent change in Bdc to 1.97 microT to tune for H+ as in the first test. The Bac values ranged from 0.79 to 2.05 microT rms. After a 23 h incubation and exposure to the MF in the presence of NGF (5 ng/ml), the NO was analyzed using a stereoscopic microscope. The results showed that the NGF stimulation of neurite outgrowth (NSNO) was affected by MF combinations over most of the Bac exposure range generally consistent with the predictions of the IPR model. However, for a distinct range of Bac where the IPR model predicted maximal ionic influence, the observed pattern of NSNO contrasted sharply with those predictions. The symmetry of this response suggests that values of Bac within this distinct range may trigger alternate or additional cellular mechanisms that lead to an apparent lack of response to the MF stimulus.


Cancer Letters | 1995

Melatonin enhances junctional transfer in normal C3H/10T1/2 cells☆

Alejandro Úbeda; M.Angeles Trillo; Dennis E. House; Carl F. Blackman

Gap junctional intercellular communication is known to be involved in controlling cell proliferation and differentiation, and seems to play a crucial role in suppression of tumor promotion. The pineal gland and its hormone, melatonin, are believed to intervene in the control of neoplastic processes. Several possible mechanisms have been suggested to be potentially responsible for melatonins oncostatic action; however, the actual mechanisms involved in melatonins effects at the cellular level remain unidentified. In the present study low-density cultures of C3H/10T1/2 mouse embryo fibroblasts were incubated until relatively quiescent monolayers were established (17-18 days). Gap junctional intercellular communication in control samples and in cells treated with 10(-12) to 10(-8) M melatonin was determined by the scrape-loading assay using the fluorescent dye Lucifer yellow. The results showed that concentrations of melatonin considered physiological (10(-11) and 10(-10) M) induced a significant increase in the transfer of the dye to adjacent cells through gap junctions; both higher and lower concentrations were ineffective. These results suggest that melatonin could exert its putative oncostatic action, in part, by modulating the levels of gap junctional intercellular communication.


Cellular Physiology and Biochemistry | 2012

The Proliferative Response of NB69 Human Neuroblastoma Cells to a 50 Hz Magnetic Field is mediated by ERK1/2 Signaling

María Antonia Martínez; Alejandro Úbeda; María Antonia Cid; María Ángeles Trillo

A number of studies have reported that extremely low frequency magnetic fields (ELF-MF) can modulate proliferative processes in vitro; however, the transduction mechanisms implicated in such phenomena remain to be identified. The present study was aimed to determine whether a 50 Hz, 100 µT MF can induce cell proliferation in the human neuroblastoma line NB69, and whether the signaling pathway MAPK-ERK1/2 (Mitogen-Activated Protein Kinase - Extracellular-Signal-Regulated Kinase 1 and 2) is involved in that proliferative response. The cultures were exposed intermittently or continuously to the MF for a 63-hour duration. The continuous treatment did not induce significant changes in cell proliferation. In contrast, intermittent exposure caused statistically significant increase in the percent of cells in phase S of the cell cycle, followed by a significant increase in cell number. The intermittent treatment also induced an early, transient and repetitive activation of ERK1/2 that could be involved in the proliferative effects. In fact, both the proliferative response and the repeated activation of ERK1/2 were blocked by PD98059, the specific inhibitor of MEK (ERK kinases 1 and 2). Taken together, the described results indicate that a 50 Hz, 100 µT MF can stimulate proliferation in NB69 cells by triggering MAPK-ERK1/ 2 signaling at each of the “On” periods of an intermittent exposure.


Cellular Physiology and Biochemistry | 2014

Electric stimulation at 448 kHz promotes proliferation of human mesenchymal stem cells.

María Luisa Hernández-Bule; Carlos Luis Paíno; María Ángeles Trillo; Alejandro Úbeda

Background/Aims: Capacitive-resistive electric transfer (CRET) is a non invasive electrothermal therapy that applies electric currents within the 400 kHz - 450 kHz frequency range to the treatment of musculoskeletal lesions. Evidence exists that electric currents and electric or magnetic fields can influence proliferative and/or differentiating processes involved in tissue regeneration. This work investigates proliferative responses potentially underlying CRET effects on tissue repair. Methods: XTT assay, flow cytometry, immunofluorescence and Western Blot analyses were conducted to asses viability, proliferation and differentiation of adipose-derived stem cells (ADSC) from healthy donors, after short, repeated (5 m On/4 h Off) in vitro stimulation with a 448-kHz electric signal currently used in CRET therapy, applied at a subthermal dose of 50 μA/mm2Results: The treatment induced PCNA and ERK1/2 upregulation, together with significant increases in the fractions of ADSC undergoing cycle phases S, G2 and M, and enhanced cell proliferation rate. This proliferative effect did not compromise the multipotential ability of ADSC for subsequent adipogenic, chondrogenic or osteogenic differentiation. Conclusions: These data identify cellular and molecular phenomena potentially underlying the response to CRET and indicate that CRET-induced lesion repair could be mediated by stimulation of the proliferation of stem cells present in the injured tissues.


International Journal of Oncology | 2012

Influence of a 50 Hz magnetic field and of all-trans‑retinol on the proliferation of human cancer cell lines.

María Ángeles Trillo; María Antonia Martínez; María Antonia Cid; Jocelyne Leal; Alejandro Úbeda

In vitro exposure to power frequency magnetic fields (MF) has been reported to influence cell proliferation and differentiation. However, the nature of the response of different human cancer cell types to these fields has not been sufficiently characterized. The present work investigates the response of two proliferating human cell lines of neuroblastoma (NB69) and hepatocarcinoma (HepG2) to a 42 h, intermittent treatment with a weak, 100 µT, 50 Hz MF, alone or in combination with 0.5 µM all-trans-retinol (ROL), a retinoid currently applied in oncostatic therapies. In each experimental replicate the cell samples were submitted to one of the following treatment combinations: MF+/ROL+, MF+/ROL-, MF-/ROL+ or MF-/ROL-. The proliferative response was determined by cell counting (Trypan blue exclusion), BrdU incorporation and by spectrophotometric analysis of total protein and DNA content. The results show that when administered separately, the two treatments, MF and ROL, significantly enhanced cell proliferation in both cell lines. In NB69 simultaneous administration of MF and ROL induced an additive effect on cell proliferation, associated to increased DNA content. By contrast, in HepG2 the ROL-induced cell proliferation and increased protein content were partially blocked by simultaneous exposure to MF. Taken together, these data show that both agents, a weak MF and ROL at a low concentration, induce proliferative responses in the two assayed human cell lines. However, significant differences were observed between the responses of the two cellular species to the combined treatment with ROL and MF, indicating that the mechanisms underlying the cellular response to each of the two agents can mutually interact in a manner that is cell type-specific.


Oncology Reports | 2013

Retinoic acid inhibits the cytoproliferative response to weak 50‑Hz magnetic fields in neuroblastoma cells

María Ángeles Trillo; María Antonia Martínez; María Antonia Cid; Alejandro Úbeda

We previously reported that intermittent exposure to a 50-Hz magnetic field (MF) at 100 μT stimulates cell proliferation in the human neuroblastoma cell line NB69. The present study aimed to investigate whether the magnetic field-induced growth promotion also occurs at a lower magnetic flux density of 10 μT. To this purpose, NB69 cells were subjected for 42 h to intermittent exposure, 3 h on/3 h off, to a 50-Hz MF at a 10 or 100 μT magnetic flux density. The field exposure took place either in the presence or in the absence of the antiproliferative agent retinoic acid. At the end of the treatment and/or incubation period, the cell growth was estimated by hemocytometric counting and spectrophotometric analysis of total protein and DNA contents. Potential changes in DNA synthesis were also assessed through proliferating cell nuclear antigen (PCNA) immunolabeling. The results confirmed previously reported data that a 42-h exposure to a 50-Hz sine wave MF at 100 μT promotes cell growth in the NB69 cell line, and showed that 10 μT induces a similar proliferative response. This effect, which was significantly associated and linearly correlated with PCNA expression, was abolished by the presence of retinoic acid in the culture medium.


International Journal of Oncology | 2012

Radiofrequency currents exert cytotoxic effects in NB69 human neuroblastoma cells but not in peripheral blood mononuclear cells

María Luisa Hernández-Bule; Ernesto Roldán; Joaquín Matilla; María Ángeles Trillo; Alejandro Úbeda

Recently, a number of electric and electrothermal therapies have been applied to the treatment of specific cancer types. However, the cellular and molecular mechanisms involved in the response to such therapies have not been well characterized yet. Capacitive-resistive electric transfer (CRET) therapy uses electric currents at frequencies within the 0.45–0.6 MHz range to induce hyperthermia in target tissues. Preliminary trials in cancer patients have shown consistent signs that CRET could slow down growth of tumor tissues in brain gliomas, without inducing detectable damage in the surrounding healthy tissue. Previous studies by our group have shown that subthermal treatment with 0.57-MHz electric currents can induce a cytostatic, not cytotoxic response in HepG2 human hepatocarcinoma cells; such effect being mediated by cell cycle alterations. In contrast, the study of the response of NB69 human neuroblastoma cells to the same electric treatment revealed consistent indications of cytotoxic effects. The present study extends the knowledge on the response of NB69 cells to the subthermal stimulus, comparing it to that of primary cultures of human peripheral blood mononuclear cells (PBMC) exposed to the same treatment. The results showed no sensitivity of PBMC to the 0.57 MHz subthermal currents and confirmed that the treatment exerts a cytotoxic action in NB69 cells. The data also revealed a previously undetected cytostatic response of the neuroblastoma cell line. CRET currents affected NB69 cell proliferation by significantly reducing the fraction of cells in the phase G2/M of the cell cycle at 12 h of exposure. These data provide new information on the mechanisms of response to CRET therapy, and are consistent with a cytotoxic and/or cytostatic action of the electric treatment, which would affect human cells of tumor origin but not normal cells with a low proliferation rate.


Bioelectromagnetics | 2011

Assessment of occupational exposure to extremely low frequency magnetic fields in hospital personnel.

Alejandro Úbeda; María Antonia Martínez; María Antonia Cid; Lucia Chacon; María Ángeles Trillo; Jocelyne Leal

It has been proposed that chronic exposure to extremely low frequency (ELF) magnetic fields (MF) in occupational environments could represent a risk factor for a number of disorders. Medical and technical workers in hospitals have been reported to be exposed to relatively strong ELF fields. The present work aims to characterize exposure to MF in the 5 Hz to 2 kHz frequency range in a large hospital through both instantaneous environmental measurements and personal monitoring of workers. The study was conducted in different working environments of a hospital with about 4400 employees, many of them working at two or more different work stations and consequently, exposed to MF levels that were expected to be unevenly distributed in space and time. The results indicate that: (1) The dominant frequency at the studied environments was 50 Hz (average 90.8 ± 6% of the total B value); (2) The best descriptive information on a workers exposure is obtained from personal monitoring of volunteer workers; (3) The arithmetic averages of exposure levels obtained from the monitoring ranged from 0.03 ± 0.01 µT in nurses to 0.39 ± 0.13 µT in physiotherapists; and (4) The description of the MF environment through spot measurements in the workplace, although coherent with the data from personal monitoring, might not adequately estimate MF exposure in some professional categories.


International Journal of Molecular Sciences | 2016

Power Frequency Magnetic Fields Affect the p38 MAPK-Mediated Regulation of NB69 Cell Proliferation Implication of Free Radicals.

María Antonia Martínez; Alejandro Úbeda; Jorge Alberto Sevilla Moreno; María Ángeles Trillo

The proliferative response of the neuroblastoma line NB69 to a 100 µT, 50 Hz magnetic field (MF) has been shown mediated by activation of the MAPK-ERK1/2 pathway. This work investigates the MF effect on the cell cycle of NB69, the participation of p38 and c-Jun N-terminal (JNK) kinases in the field-induced proliferative response and the potential involvement of reactive oxygen species (ROS) in the activation of the MAPK-ERK1/2 and -p38 signaling pathways. NB69 cultures were exposed to the 100 µT MF, either intermittently for 24, 42 or 63 h, or continuously for periods of 15 to 120 min, in the presence or absence of p38 or JNK inhibitors: SB203580 and SP600125, respectively. Antioxidant N-acetylcysteine (NAC) was used as ROS scavenger. Field exposure induced transient activation of p38, JNK and ERK1/2. The MF proliferative effect, which was mediated by changes in the cell cycle, was blocked by the p38 inhibitor, but not by the JNK inhibitor. NAC blocked the field effects on cell proliferation and p38 activation, but not those on ERK1/2 activation. The MF-induced proliferative effects are exerted through sequential upregulation of MAPK-p38 and -ERK1/2 activation, and they are likely mediated by a ROS-dependent activation of p38.


Cellular Physiology and Biochemistry | 2012

Antagonistic Effects of a 50 Hz Magnetic Field and Melatonin in the Proliferation and Differentiation of Hepatocarcinoma Cells

María Antonia Cid; Alejandro Úbeda; María Luisa Hernández-Bule; María Antonia Martínez; María Ángeles Trillo

Background/Aims: Epidemiological and experimental evidence exists indicating that exposure to weak, extremely low frequency magnetic fields (ELF - MF) could affect cancer progression. It has been proposed that such hypothetical action could be mediated by MF-induced effects on the cellular response to melatonin (MEL), a potentially oncostatic neurohormone. The present study investigates the response of HepG2 cells to intermittent exposure to a 50 Hz, 10 µT MF, in the presence or absence of MEL at physiological (10 nM) or pharmacological doses (1 µM). Methods: The Trypan blue cell exclusion test, BrdU incorporation and PCNA expression assays were carried out to assess the cellular response in terms of viability and proliferation. In addition, albumin and alpha-fetoprotein, were analyzed as specific hepatocellular differentiation markers. Results: The results indicate that the MF exerts significant cytoproliferative and dedifferentiating effects that can be prevented by 10 nM MEL. Conversely, MEL exerts cytostatic and differentiating effects on HepG2 that are abolished by simultaneous exposure to MF. Conclusion: As a whole, these results support the hypothesis that ELF - MF and MEL exert opposite, mutually counteracting effects on cell proliferation and differentiation.

Collaboration


Dive into the Alejandro Úbeda's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Carl F. Blackman

United States Environmental Protection Agency

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Juan E. Page

Technical University of Madrid

View shared research outputs
Top Co-Authors

Avatar

M. Blanco

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge