Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alejandro Vazquez-Martin is active.

Publication


Featured researches published by Alejandro Vazquez-Martin.


PLOS ONE | 2009

Autophagy Facilitates the Development of Breast Cancer Resistance to the Anti-HER2 Monoclonal Antibody Trastuzumab

Alejandro Vazquez-Martin; Cristina Oliveras-Ferraros; Javier A. Menendez

Autophagy has been emerging as a novel cytoprotective mechanism to increase tumor cell survival under conditions of metabolic stress and hypoxia as well as to escape chemotherapy-induced cell death. To elucidate whether autophagy might also protect cancer cells from the growth inhibitory effects of targeted therapies, we evaluated the autophagic status of preclinical breast cancer models exhibiting auto-acquired resistance to the anti-HER2 monoclonal antibody trastuzumab (Tzb). We first examined the basal autophagic levels in Tzb-naive SKBR3 cells and in two pools of Tzb-conditioned SKBR3 cells (TzbR), which optimally grow in the presence of Tzb doses as high as 200 µg/ml Tzb. Fluorescence microscopic analyses revealed that the number of punctate LC3 structures -a hallmark of autophagy- was drastically higher in Tzb-refractory cells than in Tzb-sensitive SKBR3 parental cells. Immunoblotting analyses confirmed that the lipidation product of the autophagic conversion of LC3 was accumulated to high levels in TzbR cells. High levels of the LC3 lipidated form in Tzb-refractory cells were accompanied by decreased p62/sequestosome-1 protein expression, a phenomenon characterizing the occurrence of increased autophagic flux. Moreover, increased autophagy was actively used to survive Tzb therapy as TzbR pools were exquisitely sensitive to chemical inhibitors of autophagosomal formation/function. Knockdown of LC3 expression via siRNA similarly resulted in reduced TzbR cell proliferation and supra-additively interacted with Tzb to re-sensitize TzbR cells. Sub-groups of Tzb-naive SKBR3 parental cells accumulated LC3 punctate structures and decreased p62 expression after treatment with high-dose Tzb, likely promoting their own resistance. This is the first report showing that HER2-overexpressing breast cancer cells chronically exposed to Tzb exhibit a bona fide up-regulation of the autophagic activity that efficiently works to protect breast cancer cells from the growth-inhibitory effects of Tzb. Therapeutic targeting autophagosome formation/function might represent a novel molecular avenue to reduce the emergence of Tzb resistance in HER2-dependent breast carcinomas.


BMC Cancer | 2007

Olive oil's bitter principle reverses acquired autoresistance to trastuzumab (Herceptin™) in HER2-overexpressing breast cancer cells

Javier A. Menendez; Alejandro Vazquez-Martin; Ramon Colomer; Joan Brunet; Alegría Carrasco-Pancorbo; Rocío García-Villalba; Alberto Fernández-Gutiérrez; Antonio Segura-Carretero

BackgroundA low incidence of breast cancer in the Mediterranean basin suggests that a high consumption of Extra Virgin Olive Oil (EVOO) might confer this benefit. While the anti-HER2 oncogene effects of the main ω-9 fatty acid present in EVOO triacylglycerols (i.e., oleic acid) have been recently described, the anti-breast cancer activities of EVOO non-glyceridic constituents -which consist of at least 30 phenolic compounds-, remained to be evaluated.MethodsSemi-preparative HPLC was used to isolate EVOO polyphenols (i.e., tyrosol, hydroxytyrosol, oleuropein). Both the anti-proliferative and the pro-apoptotic effects of EVOO phenolics were evaluated by using MTT-based quantification of metabolically viable cells and ELISA-based detection of histone-associated DNA fragments, respectively. The nature of the interaction between oleuropein aglycone and the anti-HER2 monoclonal antibody trastuzumab (Herceptin™) was mathematically evaluated by the dose-oriented isobologram technique. HER2-specific ELISAs were employed to quantitatively assess both the basal cleavage of the HER2 extracellular domain (ECD) and the expression level of total HER2. The activation status of HER2 was evaluated by immunoblotting procedures using a monoclonal antibody specifically recognizing the tyrosine phosphorylated (Phosphor-Tyr1248) form of HER2.ResultsAmong EVOO polyphenols tested, oleuropein aglycone was the most potent EVOO phenolic in decreasing breast cancer cell viability. HER2 gene-amplified SKBR3 cells were ~5-times more sensitive to oleuropein aglycone than HER2-negative MCF-7 cells. Retroviral infection of the HER2 oncogene in MCF-7 cells resulted in a SKBR3-assimilated phenotype of hypersensitivity to oleuropein aglycone. An up to 50-fold increase in the efficacy of trastuzumab occurred in the presence of oleuropein aglycone. A preclinical model of acquired autoresistance to trastuzumab (SKBR3/Tzb100 cells) completely recovered trastuzumab sensitivity (> 1,000-fold sensitization) when co-cultured in the presence of oleuropein aglycone. Indeed, the nature of the interaction between oleuropein aglycone and trastuzumab was found to be strongly synergistic in Tzb-resistant SKBR3/Tzb100 cells. Mechanistically, oleuropein aglycone treatment significantly reduced HER2 ECD cleavage and subsequent HER2 auto-phosphorylation, while it dramatically enhanced Tzb-induced down-regulation of HER2 expression.ConclusionOlive oils bitter principle (i.e., oleuropein aglycone) is among the first examples of how selected nutrients from an EVOO-rich Mediterranean diet directly regulate HER2-driven breast cancer disease.


Autophagy | 2013

Autophagy in stem cells

Jun-Lin Guan; Anna Katharina Simon; Mark Prescott; Javier A. Menendez; Fei Liu; Fen Wang; Chenran Wang; Ernst J. Wolvetang; Alejandro Vazquez-Martin; Jue Zhang

Autophagy is a highly conserved cellular process by which cytoplasmic components are sequestered in autophagosomes and delivered to lysosomes for degradation. As a major intracellular degradation and recycling pathway, autophagy is crucial for maintaining cellular homeostasis as well as remodeling during normal development, and dysfunctions in autophagy have been associated with a variety of pathologies including cancer, inflammatory bowel disease and neurodegenerative disease. Stem cells are unique in their ability to self-renew and differentiate into various cells in the body, which are important in development, tissue renewal and a range of disease processes. Therefore, it is predicted that autophagy would be crucial for the quality control mechanisms and maintenance of cellular homeostasis in various stem cells given their relatively long life in the organisms. In contrast to the extensive body of knowledge available for somatic cells, the role of autophagy in the maintenance and function of stem cells is only beginning to be revealed as a result of recent studies. Here we provide a comprehensive review of the current understanding of the mechanisms and regulation of autophagy in embryonic stem cells, several tissue stem cells (particularly hematopoietic stem cells), as well as a number of cancer stem cells. We discuss how recent studies of different knockout mice models have defined the roles of various autophagy genes and related pathways in the regulation of the maintenance, expansion and differentiation of various stem cells. We also highlight the many unanswered questions that will help to drive further research at the intersection of autophagy and stem cell biology in the near future.


Clinical Chemistry | 2009

Fatty Acid Synthase: Association with Insulin Resistance, Type 2 Diabetes, and Cancer

Javier A. Menendez; Alejandro Vazquez-Martin; Francisco Ortega; José Manuel Fernández-Real

BACKGROUNDnAn emerging paradigm supports the notion that deregulation of fatty acid synthase (FASN)-catalyzed de novo FA biogenesis could play a central role in the pathogenesis of metabolic diseases sharing the hallmark of insulin-resistance.nnnCONTENTnWe reviewed pharmacological and genetic alterations of FASN activity that have been shown to significantly influence energy expenditure rates, fat mass, insulin sensitivity, and cancer risk. This new paradigm proposes that insulin-resistant conditions such as obesity, type 2 diabetes, and cancer arise from a common FASN-driven lipogenic state. An important question then is whether the development or the progression of insulin-related metabolic disorders can be prevented or reversed by the modulation of FASN status. If we accept the paradigm of FASN dysfunction as a previously unrecognized link between insulin resistance, type 2 diabetes, and cancer, the use of insulin sensitizers in parallel with forthcoming FASN inhibitors should be a valuable therapeutic approach that, in association with lifestyle interventions, would concurrently improve energy-flux status, ameliorate insulin sensitivity, and alleviate the risk of lipogenic carcinomas.nnnCONCLUSIONSnAlthough the picture is currently incomplete and researchers in the field have plenty of work ahead, the latest clinical and experimental evidence that we discuss illuminates a functional and drug-modifiable link that connects FASN-driven endogenous FA biosynthesis, insulin action, and glucose homeostasis in the natural history of insulin-resistant pathologies.


BMC Cancer | 2008

tabAnti-HER2 (erbB-2) oncogene effects of phenolic compounds directly isolated from commercial Extra-Virgin Olive Oil (EVOO)

Javier A. Menendez; Alejandro Vazquez-Martin; Rocío García-Villalba; Alegría Carrasco-Pancorbo; Cristina Oliveras-Ferraros; Alberto Fernández-Gutiérrez; Antonio Segura-Carretero

BackgroundThe effects of the olive oil-rich Mediterranean diet on breast cancer risk might be underestimated when HER2 (ERBB2) oncogene-positive and HER2-negative breast carcinomas are considered together. We here investigated the anti-HER2 effects of phenolic fractions directly extracted from Extra Virgin Olive Oil (EVOO) in cultured human breast cancer cell lines.MethodsSolid phase extraction followed by semi-preparative high-performance liquid chromatography (HPLC) was used to isolate phenolic fractions from commercial EVOO. Analytical capillary electrophoresis coupled to mass spectrometry was performed to check for the composition and to confirm the identity of the isolated fractions. EVOO polyphenolic fractions were tested on their tumoricidal ability against HER2-negative and HER2-positive breast cancer in vitro models using MTT, crystal violet staining, and Cell Death ELISA assays. The effects of EVOO polyphenolic fractions on the expression and activation status of HER2 oncoprotein were evaluated using HER2-specific ELISAs and immunoblotting procedures, respectively.ResultsAmong the fractions mainly containing the single phenols hydroxytyrosol and tyrosol, the polyphenol acid elenolic acid, the lignans (+)-pinoresinol and 1-(+)-acetoxypinoresinol, and the secoiridoids deacetoxy oleuropein aglycone, ligstroside aglycone, and oleuropein aglycone, all the major EVOO polyphenols (i.e. secoiridoids and lignans) were found to induce strong tumoricidal effects within a micromolar range by selectively triggering high levels of apoptotic cell death in HER2-overexpressors. Small interfering RNA-induced depletion of HER2 protein and lapatinib-induced blockade of HER2 tyrosine kinase activity both significantly prevented EVOO polyphenols-induced cytotoxicity. EVOO polyphenols drastically depleted HER2 protein and reduced HER2 tyrosine autophosphorylation in a dose- and time-dependent manner. EVOO polyphenols-induced HER2 downregulation occurred regardless the molecular mechanism contributing to HER2 overexpression (i.e. naturally by gene amplification and ectopically driven by a viral promoter). Pre-treatment with the proteasome inhibitor MG132 prevented EVOO polyphenols-induced HER2 depletion.ConclusionThe ability of EVOO-derived polyphenols to inhibit HER2 activity by promoting the proteasomal degradation of the HER2 protein itself, together with the fact that humans have safely been ingesting secoiridoids and lignans as long as they have been consuming olives and OO, support the notion that the stereochemistry of these phytochemicals might provide an excellent and safe platform for the design of new HER2-targeting agents.


Cell Cycle | 2013

Xenohormetic and anti-aging activity of secoiridoid polyphenols present in extra virgin olive oil: a new family of gerosuppressant agents.

Javier A. Menendez; Jorge Joven; Gerard Aragonès; Enrique Barrajón-Catalán; Raúl Beltrán-Debón; Isabel Borrás-Linares; Jordi Camps; Bruna Corominas-Faja; Sílvia Cufí; Salvador Fernández-Arroyo; Anabel García-Heredia; Anna Hernández-Aguilera; María Herranz-López; Cecilia Jiménez-Sánchez; Eugeni López-Bonet; Jesús Lozano-Sánchez; Fedra Luciano-Mateo; Begoña Martin-Castillo; Vicente Martín-Paredero; Almudena Pérez-Sánchez; Cristina Oliveras-Ferraros; Marta Riera-Borrull; Esther Rodríguez-Gallego; Rosa Quirantes-Piné; Anna Rull; Laura Tomás-Menor; Alejandro Vazquez-Martin; Carlos Alonso-Villaverde; Vicente Micol; Antonio Segura-Carretero

Aging can be viewed as a quasi-programmed phenomenon driven by the overactivation of the nutrient-sensing mTOR gerogene. mTOR-driven aging can be triggered or accelerated by a decline or loss of responsiveness to activation of the energy-sensing protein AMPK, a critical gerosuppressor of mTOR. The occurrence of age-related diseases, therefore, reflects the synergistic interaction between our evolutionary path to sedentarism, which chronically increases a number of mTOR activating gero-promoters (e.g., food, growth factors, cytokines and insulin) and the “defective design” of central metabolic integrators such as mTOR and AMPK. Our laboratories at the Bioactive Food Component Platform in Spain have initiated a systematic approach to molecularly elucidate and clinically explore whether the “xenohormesis hypothesis,” which states that stress-induced synthesis of plant polyphenols and many other phytochemicals provides an environmental chemical signature that upregulates stress-resistance pathways in plant consumers, can be explained in terms of the reactivity of the AMPK/mTOR-axis to so-called xenohormetins. Here, we explore the AMPK/mTOR-xenohormetic nature of complex polyphenols naturally present in extra virgin olive oil (EVOO), a pivotal component of the Mediterranean style diet that has been repeatedly associated with a reduction in age-related morbid conditions and longer life expectancy. Using crude EVOO phenolic extracts highly enriched in the secoiridoids oleuropein aglycon and decarboxymethyl oleuropein aglycon, we show for the first time that (1) the anticancer activity of EVOO secoiridoids is related to the activation of anti-aging/cellular stress-like gene signatures, including endoplasmic reticulum (ER) stress and the unfolded protein response, spermidine and polyamine metabolism, sirtuin-1 (SIRT1) and NRF2 signaling; (2) EVOO secoiridoids activate AMPK and suppress crucial genes involved in the Warburg effect and the self-renewal capacity of “immortal” cancer stem cells; (3) EVOO secoiridoids prevent age-related changes in the cell size, morphological heterogeneity, arrayed cell arrangement and senescence-associated β-galactosidase staining of normal diploid human fibroblasts at the end of their proliferative lifespans. EVOO secoiridoids, which provide an effective defense against plant attack by herbivores and pathogens, are bona fide xenohormetins that are able to activate the gerosuppressor AMPK and trigger numerous resveratrol-like anti-aging transcriptomic signatures. As such, EVOO secoiridoids constitute a new family of plant-produced gerosuppressant agents that molecularly “repair” the aimless (and harmful) AMPK/mTOR-driven quasi-program that leads to aging and aging-related diseases, including cancer.


Breast Cancer Research and Treatment | 2008

Fatty acid metabolism in breast cancer cells: differential inhibitory effects of epigallocatechin gallate (EGCG) and C75

Teresa Puig; Alejandro Vazquez-Martin; Joana Relat; Jordi Petriz; Javier A. Menendez; Rut Porta; Gemma Casals; Pedro F. Marrero; Diego Haro; Joan Brunet; Ramon Colomer

Endogenous fatty acid metabolism is crucial to maintain the cancer cell malignant phenotype. Lipogenesis is regulated by the enzyme fatty acid synthase (FASN); and breakdown of fatty acids is regulated by carnitine palmitoyltransferase-1 (CPT-I). FASN is highly expressed in breast cancer and most common human carcinomas. Several compounds can inhibit FASN, although the degree of specificity of this inhibition has not been addressed. We have tested the effects of C75 and (-)-epigallocatechin-3-gallate (EGCG) on fatty acid metabolism pathways, cellular proliferation, induction of apoptosis and cell signalling in human breast cancer cells. Our results show that C75 and EGCG had comparable effects in blocking FASN activity. Treating cancer cells with EGCG or C75 induced apoptosis and caused a decrease in the active forms of oncoprotein HER2, AKT and ERK1/2 to a similar degree. We observed, in contrast, marked differential effects between C75 and EGCG on the fatty acid oxidation pathway. While EGCG had either no effect or a moderate reduction in CPT-I activity, C75 stimulated CPT-I activity (up to 129%), even in presence of inhibitory levels of malonyl-CoA, a potent inhibitor of the CPT-I enzyme. Taken together, these findings indicate that pharmacological inhibition of FASN occurs uncoupled from the stimulation of CPT-I with EGCG but not with C75, suggesting that EGCG might be free of the CPT-I related in vivo weight-loss that has been associated with C75. Our results establish EGCG as a potent and specific inhibitor of fatty acid synthesis (FASN), which may hold promise as a target-directed anti-cancer drug.


Cell Cycle | 2012

Activation of AMP-activated protein kinase (AMPK) provides a metabolic barrier to reprogramming somatic cells into stem cells

Alejandro Vazquez-Martin; Luciano Vellon; Pedro M. Quirós; Sílvia Cufí; Eunate Ruiz de Galarreta; Cristina Oliveras-Ferraros; Angel G. Martin; Begoña Martin-Castillo; Carlos López-Otín; Javier A. Menendez

The ability of somatic cells to reprogram their ATP-generating machinery into a Warburg-like glycolytic metabotype while overexpressing stemness genes facilitates their conversion into either induced pluripotent stem cells (iPSCs) or tumor-propagating cells. AMP-activated protein kinase (AMPK) is a metabolic master switch that senses and decodes intracellular changes in energy status; thus, we have evaluated the impact of AMPK activation in regulating the generation of iPSCs from nonstem cells of somatic origin. The indirect and direct activation of AMPK with the antidiabetic biguanide metformin and the thienopyridone A-769662, respectively, impeded the reprogramming of mouse embryonic and human diploid fibroblasts into iPSCs. The AMPK activators established a metabolic barrier to reprogramming that could not be bypassed, even through p53 deficiency, a fundamental mechanism to greatly improve the efficiency of stem-cell production. Treatment with metformin or A-769662 before the generation of iPSC colonies was sufficient to drastically decrease iPSC generation, suggesting that AMPK activation impedes early stem cell genetic reprogramming. Monitoring the transcriptional activation status of each individual reprogramming factor (i.e., Oct4, Sox2, Klf4 and c-Myc) revealed that AMPK activation notably prevented the transcriptional activation of Oct4, the master regulator of the pluripotent state. AMPK activation appears to impose a normalized metabolic flow away from the required pro-immortalizing glycolysis that fuels the induction of stemness and pluripotency, endowing somatic cells with an energetic infrastructure that is protected against reprogramming. AMPK-activating anti-reprogramming strategies may provide a roadmap for the generation of novel cancer therapies that metabolically target tumor-propagating cells.


Molecular Carcinogenesis | 2008

BRCA1 and acetyl-CoA carboxylase: The metabolic syndrome of breast cancer

Joan Brunet; Alejandro Vazquez-Martin; Ramon Colomer; Begoña Graña-Suarez; Begoña Martin-Castillo; Javier A. Menendez

Breast cancer‐associated mutations affecting the highly‐conserved C‐terminal BRCT domains of the tumor suppressor gene breast cancer susceptibility gene 1 (BRCA1) fully disrupt the ability of BRCA1 to interact with acetyl coenzyme A carboxylase alpha (ACCA), the rate‐limiting enzyme catalyzing de novo fatty acid biogenesis. Specifically, BRCA1 interacts solely with the phosphorylated (inactive) form of ACCA (P‐ACCA), and the formation of the BRCA1/P‐ACCA complex interferes with ACCA activity by preventing P‐ACCA dephosphorylation. One of the hallmarks of aggressive cancer cells is a high rate of energy‐consuming anabolic processes driving the synthesis of lipids, proteins, and DNA (all of which are regulated by the energy status of the cell). The ability of BRCA1 to stabilize the phosphorylated/inactive form of ACCA strongly suggests that the tumor suppressive function of BRCA1 closely depends on its ability to mimic a cellular‐low‐energy status, which is known to block tumor cell anabolism and suppress the malignant phenotype. Interestingly, physical exercise and lack of obesity in adolescence have been associated with significantly delayed breast cancer onset for Ashkenazi Jewish women carrying BRCA1 gene mutations. Further clinical work may explore a chemopreventative role of “low‐energy‐mimickers” deactivating the ACCA‐driven “lipogenic phenotype” in women with inherited mutations in BRCA1. This goal might be obtained with current therapeutic approaches useful in treating the metabolic syndrome and associated disorders in humans (e.g., type 2 diabetes and obesity), including metformin, thiazolidinediones (TZDs), calorie deprivation, and exercise. Alternatively, new forthcoming ACCA inhibitors may be relevant in the management of BRCA1‐dependent breast cancer susceptibility and development.


Breast Cancer Research and Treatment | 2004

Trastuzumab plus tamoxifen: anti-proliferative and molecular interactions in breast carcinoma

Santiago Ropero; Javier A. Menendez; Alejandro Vazquez-Martin; Sagrario Montero; Hernán Cortés-Funes; Ramon Colomer

HER2 overexpression has been associated with anti-estrogen resistance in human breast cancer, and it has been suggested that the combined treatment of an anti-HER2 antibody plus tamoxifen has enhanced anti-cancer efficacy in breast cancer. The detailed anti-proliferative interactions between trastuzumab and tamoxifen were analyzed with the isobologram and Chou and Talalay methods, which assess the presence of synergy, addition or antagonism. We used the breast cancer cell lines that are estrogen receptor (ER)-positive and HER2-positive. We also analyzed the molecular changes on the HER2 and (ER) signaling pathways that are induced by trastuzumab plus tamoxifen. In terms of cancer cell proliferation, the simultaneous combination of trastuzumab and tamoxifen on BT-474 cells was more growth inhibitory (44%) than the treatment with trastuzumab (24%) or tamoxifen (31%) alone. Isobologram analysis of simultaneous trastuzumab plus tamoxifen exposure showed, however, that there were antagonistic interactions at an effect level of 30% (IC30). Using Chou and Talalay analysis we also observed antagonistic interactions at lower levels of cell kill, although there were additive effects at highest levels of cell kill. Trastuzumab followed by tamoxifen showed antagonism at all effects levels. Tamoxifen followed by trastuzumab showed antagonism at lower levels of cell kill, and additivity at higher levels of cell kill. Similar interactions were observed using T47D cells. The molecular effects of the combined treatment with trastuzumab plus tamoxifen on the levels of HER2 and ER signaling showed that, with respect to HER2 protein levels, trastuzumab downregulated HER2 by 27%, tamoxifen upregulated HER2 by 40%, and the combination of trastuzumab plus tamoxifen did not induce changes in HER2 respect to control. With respect to HER2 mRNA, trastuzumab upregulated HER2 mRNA to 367%, tamoxifen to 166%, and the combination to 401%. With respect to HER2 phosphorylation, trastuzumab upregulated HER2 phosphorylation to 352%, tamoxifen to 202% and the combination to 633%. Epidermal growth factor receptor levels were not changed by trastuzumab or tamoxifen alone, and were upregulated to 138% by the combination. The protein levels and activity of extracellular recptor kinase were not modified by trastuzumab, tamoxifen or the combination. Finally, estrogen receptor protein and mRNA levels were downregulated to about 50% by trastuzumab, tamoxifen or the combination. Taken together, our results show that in ER-positive breast cancer cells overexpressing HER2, trastuzumab plus tamoxifen have antagonistic interactions when used in combination, and that this antagonism may be related with an increase in HER2 signaling pathways that occurs when tamoxifen is added to trastuzumab.

Collaboration


Dive into the Alejandro Vazquez-Martin's collaboration.

Top Co-Authors

Avatar

Javier A. Menendez

NorthShore University HealthSystem

View shared research outputs
Top Co-Authors

Avatar

Ramon Colomer

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jorge Joven

University of Barcelona

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eugeni López-Bonet

Autonomous University of Barcelona

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge