Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Aleksandar F. Radovic-Moreno is active.

Publication


Featured researches published by Aleksandar F. Radovic-Moreno.


Chemical Society Reviews | 2012

Targeted polymeric therapeutic nanoparticles: design, development and clinical translation

Nazila Kamaly; Zeyu Xiao; Pedro M. Valencia; Aleksandar F. Radovic-Moreno; Omid C. Farokhzad

Polymeric materials have been used in a range of pharmaceutical and biotechnology products for more than 40 years. These materials have evolved from their earlier use as biodegradable products such as resorbable sutures, orthopaedic implants, macroscale and microscale drug delivery systems such as microparticles and wafers used as controlled drug release depots, to multifunctional nanoparticles (NPs) capable of targeting, and controlled release of therapeutic and diagnostic agents. These newer generations of targeted and controlled release polymeric NPs are now engineered to navigate the complex in vivo environment, and incorporate functionalities for achieving target specificity, control of drug concentration and exposure kinetics at the tissue, cell, and subcellular levels. Indeed this optimization of drug pharmacology as aided by careful design of multifunctional NPs can lead to improved drug safety and efficacy, and may be complimentary to drug enhancements that are traditionally achieved by medicinal chemistry. In this regard, polymeric NPs have the potential to result in a highly differentiated new class of therapeutics, distinct from the original active drugs used in their composition, and distinct from first generation NPs that largely facilitated drug formulation. A greater flexibility in the design of drug molecules themselves may also be facilitated following their incorporation into NPs, as drug properties (solubility, metabolism, plasma binding, biodistribution, target tissue accumulation) will no longer be constrained to the same extent by drug chemical composition, but also become in-part the function of the physicochemical properties of the NP. The combination of optimally designed drugs with optimally engineered polymeric NPs opens up the possibility of improved clinical outcomes that may not be achievable with the administration of drugs in their conventional form. In this critical review, we aim to provide insights into the design and development of targeted polymeric NPs and to highlight the challenges associated with the engineering of this novel class of therapeutics, including considerations of NP design optimization, development and biophysicochemical properties. Additionally, we highlight some recent examples from the literature, which demonstrate current trends and novel concepts in both the design and utility of targeted polymeric NPs (444 references).


Proceedings of the National Academy of Sciences of the United States of America | 2008

Precise engineering of targeted nanoparticles by using self-assembled biointegrated block copolymers

Frank X. Gu; Liangfang Zhang; Benjamin A. Teply; Nina Mann; Andrew Z. Wang; Aleksandar F. Radovic-Moreno; Robert Langer; Omid C. Farokhzad

There has been progressively heightened interest in the development of targeted nanoparticles (NPs) for differential delivery and controlled release of drugs. Despite nearly three decades of research, approaches to reproducibly formulate targeted NPs with the optimal biophysicochemical properties have remained elusive. A central challenge has been defining the optimal interplay of parameters that confer molecular targeting, immune evasion, and drug release to overcome the physiological barriers in vivo. Here, we report a strategy for narrowly changing the biophysicochemical properties of NPs in a reproducible manner, thereby enabling systematic screening of optimally formulated drug-encapsulated targeted NPs. NPs were formulated by the self-assembly of an amphiphilic triblock copolymer composed of end-to-end linkage of poly(lactic-co-glycolic-acid) (PLGA), polyethyleneglycol (PEG), and the A10 aptamer (Apt), which binds to the prostate-specific membrane antigen (PSMA) on the surface of prostate cancer (PCa) cells, enabling, respectively, controlled drug release, “stealth” properties for immune evasion, and cell-specific targeting. Fine-tuning of NP size and drug release kinetics was further accomplished by controlling the copolymer composition. By using distinct ratios of PLGA-b-PEG-b-Apt triblock copolymer with PLGA-b-PEG diblock copolymer lacking the A10 Apt, we developed a series of targeted NPs with increasing Apt densities that inversely affected the amount of PEG exposure on NP surface and identified the narrow range of Apt density when the NPs were maximally targeted and maximally stealth, resulting in most efficient PCa cell uptake in vitro and in vivo. This approach may contribute to further development of targeted NPs as highly selective and effective therapeutic modalities.


ACS Nano | 2008

Self-assembled lipid--polymer hybrid nanoparticles: a robust drug delivery platform.

Liangfang Zhang; Juliana M. Chan; Frank X. Gu; June Wha Rhee; Andrew Z. Wang; Aleksandar F. Radovic-Moreno; Frank Alexis; Robert Langer; Omid C. Farokhzad

We report the engineering of a novel lipid-polymer hybrid nanoparticle (NP) as a robust drug delivery platform, with high drug encapsulation yield, tunable and sustained drug release profile, excellent serum stability, and potential for differential targeting of cells or tissues. The NP comprises three distinct functional components: (i) a hydrophobic polymeric core where poorly water-soluble drugs can be encapsulated; (ii) a hydrophilic polymeric shell with antibiofouling properties to enhance NP stability and systemic circulation half-life; and (iii) a lipid monolayer at the interface of the core and the shell that acts as a molecular fence to promote drug retention inside the polymeric core, thereby enhancing drug encapsulation efficiency, increasing drug loading yield, and controlling drug release. The NP is prepared by self-assembly through a single-step nanoprecipitation method in a reproducible and predictable manner, making it potentially suitable for scale-up.


Urologic Oncology-seminars and Original Investigations | 2008

New frontiers in nanotechnology for cancer treatment

Frank Alexis; June-Wha Rhee; Jerome P. Richie; Aleksandar F. Radovic-Moreno; Robert Langer; Omid C. Farokhzad

Nanotechnology is a field of research at the crossroads of biology, chemistry, physics, engineering, and medicine. Design of multifunctional nanoparticles capable of targeting cancer cells, delivering and releasing drugs in a regulated manner, and detecting cancer cells with enormous specificity and sensitivity are just some examples of the potential application of nanotechnology to oncological diseases. In this review we discuss the recent advances of cancer nanotechnology with particular attention to nanoparticle systems that are in clinical practice or in various stages of development for cancer imaging and therapy.


Trends in Biotechnology | 2008

Nanotechnology and aptamers: applications in drug delivery

Etgar Levy-Nissenbaum; Aleksandar F. Radovic-Moreno; Andrew Z. Wang; Robert Langer; Omid C. Farokhzad

Nucleic acid ligands, also known as aptamers, are a class of macromolecules that are being used in several novel nanobiomedical applications. Aptamers are characterized by high affinity and specificity for their target, a versatile selection process, ease of chemical synthesis and a small physical size, which collectively make them attractive molecules for targeting diseases or as therapeutics. These properties will enable aptamers to facilitate innovative new nanotechnologies with applications in medicine. In this review, we will highlight recent developments in using aptamers in nanotechnology solutions for treating and diagnosing disease.


ChemMedChem | 2007

Co-delivery of hydrophobic and hydrophilic drugs from nanoparticle-aptamer bioconjugates.

Liangfang Zhang; Aleksandar F. Radovic-Moreno; Frank Alexis; Frank X. Gu; Pamela Basto; Vaishali Bagalkot; Sangyong Jon; Robert Langer; Omid C. Farokhzad

Apromisingapplicationofnanoparticle(NP)drugdeliverysystemsisthetargeteddeliveryoftherapeuticagentsinacell-,tissue-,ordisease-specificmanner.Thisgoalmaybeachieved by the surface-modification of NPs with antibodies,nucleic acid ligands (aptamers; Apt), peptides, or small mole-cules that bind to antigens present on the target cells or tis-sues.


ChemMedChem | 2008

HER-2-targeted nanoparticle-affibody bioconjugates for cancer therapy.

Frank Alexis; Pamela Basto; Etgar Levy-Nissenbaum; Aleksandar F. Radovic-Moreno; Liangfang Zhang; Eric M. Pridgen; Andrew Z. Wang; Shawn L. Marein; Katrina Westerhof; Linda K. Molnar; Omid C. Farokhzad

Affibodies are a class of polypeptide ligands that are potential candidates for cell- or tissue-specific targeting of drug-encapsulated controlled release polymeric nanoparticles (NPs). Here we report the development of drug delivery vehicles comprised of polymeric NPs that are surface modified with Affibody ligands that bind to the extracellular domain of the trans-membrane human epidermal growth factor receptor 2 (HER-2) for targeted delivery to cells which over express the HER-2 antigen. NPs lacking the anti-HER-2 Affibody did not show significant uptake by these cells. Using paclitaxel encapsulated NP-Affibody (1 wt% drug loading), we demonstrated increased cytotoxicity of these bioconjugates in SK-BR-3 and SKOV-3 cell lines. These targeted, drug encapsulated NPAffibody bioconjugates may be efficacious in treating HER-2 expressing carcinoma.


Science | 2015

A mucosal vaccine against Chlamydia trachomatis generates two waves of protective memory T cells

Georg Stary; Andrew J. Olive; Aleksandar F. Radovic-Moreno; David C. Gondek; David Alvarez; Pamela Basto; Mario Perro; Vladimir Vrbanac; Andrew M. Tager; Jinjun Shi; Jeremy Yethon; Omid C. Farokhzad; Robert Langer; Michael N. Starnbach; Ulrich H. von Andrian

The right combination for protection Despite its prevalence, no vaccine exists to protect against infection with the sexually transmitted bacterium Chlamydia trachomatis. Stary et al. now report on one potential vaccine candidate (see the Perspective by Brunham). Vaccinating with an ultraviolet light-inactivated C. trachomatis linked to adjuvant-containing charged nanoparticles protected female conventional and humanized mice against C. trachomatis infection. The vaccine conferred protection only when delivered through mucosal routes. Protection relied on targeting the bacteria to a particular population of immunogenic dendritic cells and inducing memory T cells that resided in the female genital tract. Science, this issue 10.1126/science.aaa8205; see also p. 1322 A nanoparticle-based vaccine protects mice against infection with Chlamydia trachomatis. [Also see Perspective by Brunham] INTRODUCTION Administering vaccines through nonmucosal routes often leads to poor protection against mucosal pathogens, presumably because such vaccines do not generate memory lymphocytes that migrate to mucosal surfaces. Although mucosal vaccination induces mucosa-tropic memory lymphocytes, few mucosal vaccines are used clinically; live vaccine vectors pose safety risks, whereas killed pathogens or molecular antigens are usually weak immunogens when applied to intact mucosa. Adjuvants can boost immunogenicity; however, most conventional mucosal adjuvants have unfavorable safety profiles. Moreover, the immune mechanisms of protection against many mucosal infections are poorly understood. RATIONALE One case in point is Chlamydia trachomatis (Ct), a sexually transmitted intracellular bacterium that infects >100 million people annually. Mucosal Ct infections can cause female infertility and ectopic pregnancies. Ct is also the leading cause of preventable blindness in developing countries and induces pneumonia in infants. No approved vaccines exist to date. Here, we describe a Ct vaccine composed of ultraviolet light–inactivated Ct (UV-Ct) conjugated to charge-switching synthetic adjuvant nanoparticles (cSAPs). After immunizing mice with live Ct, UV-Ct, or UV-Ct–cSAP conjugates, we characterized mucosal immune responses to uterine Ct rechallenge and dissected the underlying cellular mechanisms. RESULTS In previously uninfected mice, Ct infection induced protective immunity that depended on CD4 T cells producing the cytokine interferon-γ, whereas uterine exposure to UV-Ct generated tolerogenic Ct-specific regulatory T cells, resulting in exacerbated bacterial burden upon Ct rechallenge. In contrast, mucosal immunization with UV-Ct–cSAP elicited long-lived protection. This differential effect of UV-Ct–cSAP versus UV-Ct was because the former was presented by immunogenic CD11b+CD103– dendritic cells (DCs), whereas the latter was presented by tolerogenic CD11b–CD103+ DCs. Intrauterine or intranasal vaccination, but not subcutaneous vaccination, induced genital protection in both conventional and humanized mice. Regardless of vaccination route, UV-Ct–cSAP always evoked a robust systemic memory T cell response. However, only mucosal vaccination induced a wave of effector T cells that seeded the uterine mucosa during the first week after vaccination and established resident memory T cells (TRM cells). Without TRM cells, mice were suboptimally protected, even when circulating memory cells were abundant. Optimal Ct clearance required both early uterine seeding by TRM cells and infection-induced recruitment of a second wave of circulating memory cells. CONCLUSIONS Mucosal exposure to both live Ct and inactivated UV-Ct induces antigen-specific CD4 T cell responses. While immunogenic DCs present the former to promote immunity, the latter is instead targeted to tolerogenic DCs that exacerbate host susceptibility to Ct infection. By combining UV-Ct with cSAP nanocarriers, we have redirected noninfectious UV-Ct to immunogenic DCs and achieved long-lived protection. This protective vaccine effect depended on the synergistic action of two memory T cell subsets with distinct differentiation kinetics and migratory properties. The cSAP technology offers a platform for efficient mucosal immunization that may also be applicable to other mucosal pathogens. Protection against C. trachomatis infection after mucosal UV-Ct–cSAP vaccination. Upon mucosal vaccination, dendritic cells carry UV-Ct–cSAP to lymph nodes and stimulate CD4 T cells. Effector T cells are imprinted to traffic to uterine mucosa (first wave) and establish tissue-resident memory cells (TRM cells). Vaccination also generates circulating memory T cells. Upon genital Ct infection, local reactivation of uterine TRM cells triggers the recruitment of the circulating memory subset (second wave). Optimal pathogen clearance requires both waves of memory cells. Genital Chlamydia trachomatis (Ct) infection induces protective immunity that depends on interferon-γ–producing CD4 T cells. By contrast, we report that mucosal exposure to ultraviolet light (UV)–inactivated Ct (UV-Ct) generated regulatory T cells that exacerbated subsequent Ct infection. We show that mucosal immunization with UV-Ct complexed with charge-switching synthetic adjuvant particles (cSAPs) elicited long-lived protection in conventional and humanized mice. UV-Ct–cSAP targeted immunogenic uterine CD11b+CD103– dendritic cells (DCs), whereas UV-Ct accumulated in tolerogenic CD11b–CD103+ DCs. Regardless of vaccination route, UV-Ct–cSAP induced systemic memory T cells, but only mucosal vaccination induced effector T cells that rapidly seeded uterine mucosa with resident memory T cells (TRM cells). Optimal Ct clearance required both TRM seeding and subsequent infection-induced recruitment of circulating memory T cells. Thus, UV-Ct–cSAP vaccination generated two synergistic memory T cell subsets with distinct migratory properties.


Nanomedicine: Nanotechnology, Biology and Medicine | 2010

ChemoRad nanoparticles: a novel multifunctional nanoparticle platform for targeted delivery of concurrent chemoradiation

Andrew Z. Wang; Kai Yuet; Liangfang Zhang; Frank X. Gu; Minh Huynh-Le; Aleksandar F. Radovic-Moreno; Philip W. Kantoff; Neil H. Bander; Robert Langer; Omid C. Farokhzad

AIM The development of chemoradiation - the concurrent administration of chemotherapy and radiotherapy - has led to significant improvements in local tumor control and survival. However, it is limited by its high toxicity. In this study, we report the development of a novel NP (nanoparticle) therapeutic, ChemoRad NP, which can deliver biologically targeted chemoradiation. METHOD A biodegradable and biocompatible lipid-polymer hybrid NP that is capable of delivering both chemotherapy and radiotherapy was formulated. RESULTS Using docetaxel, indium(111) and yttrium(90) as model drugs, we demonstrated that the ChemoRad NP can encapsulate chemotherapeutics (up to 9% of NP weight) and radiotherapeutics (100 mCi of radioisotope per gram of NP) efficiently and deliver both effectively. Using prostate cancer as a disease model, we demonstrated the targeted delivery of ChemoRad NPs and the higher therapeutic efficacy of ChemoRad NPs. CONCLUSION We believe that the ChemoRad NP represents a new class of therapeutics that holds great potential to improve cancer treatment.


Proceedings of the National Academy of Sciences of the United States of America | 2015

Immunomodulatory spherical nucleic acids

Aleksandar F. Radovic-Moreno; Natalia Chernyak; Christopher C. Mader; Subbarao Nallagatla; Richard Kang; Liangliang Hao; David A. Walker; Tiffany L. Halo; Timothy J. Merkel; Clayton H. Rische; Sagar Anantatmula; Merideth Burkhart; Chad A. Mirkin; Sergei M. Gryaznov

Significance We show that by organizing immunomodulatory nucleic acids into spherical nucleic acid (SNA) form, significant increases in activity are observed. Treatment of mice with cancer using immunostimulatory SNAs and nonalcoholic steatohepatitis (NASH) using immunoregulatory SNAs leads to improved disease outcomes vs. their unstructured counterparts. These improvements derive from several key SNA properties, including rapid cellular uptake, endosomal delivery, and multivalent binding. Overall, this work underscores the importance of the spatial orientation and presentation of oligonucleotides in the design of novel immunomodulators. Immunomodulatory nucleic acids have extraordinary promise for treating disease, yet clinical progress has been limited by a lack of tools to safely increase activity in patients. Immunomodulatory nucleic acids act by agonizing or antagonizing endosomal toll-like receptors (TLR3, TLR7/8, and TLR9), proteins involved in innate immune signaling. Immunomodulatory spherical nucleic acids (SNAs) that stimulate (immunostimulatory, IS-SNA) or regulate (immunoregulatory, IR-SNA) immunity by engaging TLRs have been designed, synthesized, and characterized. Compared with free oligonucleotides, IS-SNAs exhibit up to 80-fold increases in potency, 700-fold higher antibody titers, 400-fold higher cellular responses to a model antigen, and improved treatment of mice with lymphomas. IR-SNAs exhibit up to eightfold increases in potency and 30% greater reduction in fibrosis score in mice with nonalcoholic steatohepatitis (NASH). Given the clinical potential of SNAs due to their potency, defined chemical nature, and good tolerability, SNAs are attractive new modalities for developing immunotherapies.

Collaboration


Dive into the Aleksandar F. Radovic-Moreno's collaboration.

Top Co-Authors

Avatar

Omid C. Farokhzad

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Robert Langer

Gwangju Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Liangfang Zhang

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar

Pamela Basto

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar

Andrew Z. Wang

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Frank X. Gu

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Etgar Levy-Nissenbaum

Massachusetts Institute of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge