Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Aleksandar Malikovic is active.

Publication


Featured researches published by Aleksandar Malikovic.


NeuroImage | 2000

Brodmann's Areas 17 and 18 Brought into Stereotaxic Space—Where and How Variable?

Katrin Amunts; Aleksandar Malikovic; Hartmut Mohlberg; Thorsten Schormann; Karl Zilles

Studies on structural-functional associations in the visual system require precise information on the location and variability of Brodmanns areas 17 and 18. Usually, these studies are based on the Talairach atlas, which does not rely on cytoarchitectonic observations, but on comparisons of macroscopic features in the Talairach brain and Brodmanns drawing. In addition, in this atlas are found only the approximate positions of cytoarchitectonic areas and not the exact borders. We have cytoarchitectonically mapped both areas in 10 human brains and marked their borders in corresponding computerized images. Borders were defined on the basis of quantitative cytoarchitecture and multivariate statistics. In addition to borders of areas 17 and 18, subparcellations within both areas were found. The cytoarchitectonically defined areas were 3-D reconstructed and transferred into the stereotaxic space of the standard reference brain. Surface rendering of the brains revealed high individual variability in size and shape of the areas and in the relationship to the free surface and sulci. Ranges and centers of gravity of both areas were calculated in Talairach coordinates. The positions of areas 17 and 18 in the stereotaxic space differed between the hemispheres. Both areas reached significantly more caudal and medial positions on the left than on the right. Probability maps were created in which the degree of overlap in each stereotaxic position was quantified. These maps of areas 17 and 18 are the first of their kind and contain precise stereotaxic information on both interhemispheric and interindividual differences.


European Journal of Neuroscience | 1999

Neuronal correlates of real and illusory contour perception: functional anatomy with PET

Jonas Larsson; Katrin Amunts; Balázs Gulyás; Aleksandar Malikovic; Karl Zilles; Per E. Roland

Illusory contours provide a striking example of the visual systems ability to extract a meaningful representation of the surroundings from fragmented visual stimuli. Psychophysical and neurophysiological data suggest that illusory contours are processed in early visual cortical areas, and neuroimaging studies in humans have shown that Kanizsa‐type illusory contours activate early retinotopic visual areas that are also activated by real contours. It is not known whether other types of illusory contours are processed by the same mechanisms, nor is it clear to what extent attentional effects may have influenced these results, as no attempt was made to match the salience of real and illusory stimuli in previous imaging studies. It therefore remains an open question whether there are any brain regions specifically involved in the perception of illusory contours. To address these questions, we have used 15O‐butanol positron emission tomography (PET) and a novel kind of illusory contour stimulus that is induced only by aligned line ends. By employing a form discrimination task that was matched for attention and stimulus salience across conditions we were able to directly contrast perception of real and illusory contours. We found that the regions activated by illusory contour perception were the same as those activated by real contours. Only one region, located in the right fusiform gyrus, was significantly more strongly activated by perception of illusory contours than by real contours. In addition, a principal component analysis suggested that illusory contour perception is associated with a change in the correlation between V1 and V2. We conclude that different kinds of illusory contours are processed by the same cortical regions and that these regions overlap extensively with those involved in processing of real contours. At the regional level, perception of illusory contours thus appears to differ from perception of real contours by the degree of involvement of higher visual areas as well as by the nature of interaction between early visual areas.


The Journal of Neuroscience | 2007

Gender-Specific Left–Right Asymmetries in Human Visual Cortex

Katrin Amunts; Este Armstrong; Aleksandar Malikovic; Lars Hömke; Hartmut Mohlberg; Axel Schleicher; Karl Zilles

The structural correlates of gender differences in visuospatial processing are essentially unknown. Our quantitative analysis of the cytoarchitecture of the human primary visual cortex [V1/Brodmann area 17 (BA17)], neighboring area V2 (BA18), and the cytoarchitectonic correlate of the motion-sensitive complex (V5/MT+/hOc5) shows that the visual areas are sexually dimorphic and that the type of dimorphism differs among the areas. Gender differences exist in the interhemispheric asymmetry of hOc5 volumes and in the right-hemispheric volumetric ratio of hOc5 to BA17, an area that projects to V5/MT+/hOc5. Asymmetry was also observed in the surface area of hOc5 but not in its cortical thickness. The differences give males potentially more space in which to process additional information, a finding consistent with superior male processing in particular visuospatial tasks, such as mental rotation. Gender differences in hOc5 exist with similar volume fractions of cell bodies, implying that, overall, the visual neural circuitry is similar in males and females.


Anatomy and Embryology | 2005

Human V5/MT+: comparison of functional and cytoarchitectonic data

Marcus Wilms; Simon B. Eickhoff; Karsten Specht; Katrin Amunts; Nadim Joni Shah; Aleksandar Malikovic; Gereon R. Fink

To date, the delineation of the human visual “motion area” still relies on functional paradigms originally devised to identify monkey area MT. Using fMRI, we have identified putative human area V5/MT+ in normals by modelling the BOLD responses to alternating radially moving and stationary dot patterns. Functional activations were compared with cytoarchitectonic probability maps of its putative correlate area hOc5, which was calculated based upon data from histological sections of ten human post-mortem brains. Bilateral visual cortex activations were seen in the single subject dynamic versus stationary contrasts and in the group random-effects analysis. Comparison of group data with area hOc5 revealed that 19.0%/39.5% of the right/left functional activation was assigned to the right/left hOc5. Conversely, 83.2%/53.5% of the right/left hOc5 was functionally activated. Comparison of functional probability maps (fPM) with area hOc5 showed that 28.6%/18.1% of the fPM was assigned to hOc5. In turn, 84.9%/41.5% of the area hOc5 was covered by the respective fPM. Thus, random-effects data and fPMs yielded similar results. The present study shows for the first time the correspondence between the functionally defined human V5/MT+ and the post-mortem cytoarchitectonic area hOc5.


NeuroImage | 2006

Pattern reversal visual evoked responses of V1/V2 and V5/MT as revealed by MEG combined with probabilistic cytoarchitectonic maps.

Utako B. Barnikol; Katrin Amunts; Jürgen Dammers; Hartmut Mohlberg; Thomas Fieseler; Aleksandar Malikovic; Karl Zilles; Michael Niedeggen; Peter A. Tass

Pattern reversal stimulation provides an established tool for assessing the integrity of the visual pathway and for studying early visual processing. Numerous magnetoencephalographic (MEG) and electroencephalographic (EEG) studies have revealed a three-phasic waveform of the averaged pattern reversal visual evoked potential/magnetic field, with components N75(m), P100(m), and N145(m). However, the anatomical assignment of these components to distinct cortical generators is still a matter of debate, which has inter alia connected with considerable interindividual variations of the human striate and extrastriate cortex. The anatomical variability can be compensated for by means of probabilistic cytoarchitectonic maps, which are three-dimensional maps obtained by an observer-independent statistical mapping in a sample of ten postmortem brains. Transformed onto a subjects brain under consideration, these maps provide the probability with which a given voxel of the subjects brain belongs to a particular cytoarchitectonic area. We optimize the spatial selectivity of the probability maps for V1 and V2 with a probability threshold which optimizes the self- vs. cross-overlap in the population of postmortem brains used for deriving the probabilistic cytoarchitectonic maps. For the first time, we use probabilistic cytoarchitectonic maps of visual cortical areas in order to anatomically identify active cortical generators underlying pattern reversal visual evoked magnetic fields as revealed by MEG. The generators are determined with magnetic field tomography (MFT), which reconstructs the current source density in each voxel. In all seven subjects, our approach reveals generators in V1/V2 (with a greater overlap with V1) and in V5 unilaterally (right V5 in three subjects, left V5 in four subjects) and consistent time courses of their stimulus-locked activations, with three peak activations in V1/V2 (contributing to C1m/N75m, P100m, and N145m) and two peak activations in V5 (contributing to P100m and N145m). The reverberating V1/V2 and V5 activations demonstrate the effect of recurrent activation mechanisms including V1 and extrastriate areas and/or corticofugal feedback loops. Our results demonstrate that the combined investigation of MEG signals with MFT and probabilistic cytoarchitectonic maps significantly improves the anatomical identification of active brain areas.


Brain Structure & Function | 2013

Cytoarchitectonic mapping of the human dorsal extrastriate cortex.

Milenko Kujovic; Karl Zilles; Aleksandar Malikovic; Axel Schleicher; Hartmut Mohlberg; Claudia Rottschy; Simon B. Eickhoff; Katrin Amunts

The dorsal visual stream consists of several functionally specialized areas, but most of their cytoarchitectonic correlates have not yet been identified in the human brain. The cortex adjacent to Brodmann area 18/V2 was therefore analyzed in serial sections of ten human post-mortem brains using morphometrical and multivariate statistical analyses for the definition of areal borders. Two previously unknown cytoarchitectonic areas (hOc3d, hOc4d) were detected. They occupy the medial and, to a smaller extent, lateral surface of the occipital lobe. The larger area, hOc3d, is located dorso-lateral to area V2 in the region of superior and transverse occipital, as well as parieto-occipital sulci. Area hOc4d was identified rostral to hOc3d; it differed from the latter by larger pyramidal cells in lower layer III, thinner layers V and VI, and a sharp cortex-white-matter borderline. The delineated areas were superimposed in the anatomical MNI space, and probabilistic maps were calculated. They show a relatively high intersubject variability in volume and position. Based on their location and neighborhood relationship, areas hOc3d and hOc4d are putative anatomical substrates of functionally defined areas V3d and V3a, a hypothesis that can now be tested by comparing probabilistic cytoarchitectonic maps and activation studies of the living human brain.


Surgical Neurology | 2004

Microsurgical anatomy of the perforating branches of the vertebral artery.

Slobodan Marinković; Milan Milisavljević; Hirohiko Gibo; Aleksandar Malikovic; Vuk Djulejić

BACKGROUND There is limited data in the literature related to the microanatomic features of the perforating branches of the vertebral artery. METHODS The 44 vertebral arteries and their branches were injected with india ink or a radiopaque substance and examined under the stereoscopic microscope. RESULTS The perforating arteries were noted to range in number from 1 to 11 (mean, 6.5) and in diameter between 100 microm and 520 microm (average, 243 microm). They arose from the vertebral artery (VA) (54.54%), 8 from the right, the left or both VAs. The anterior spinal artery (ASA), which was singular (81.82%), duplicated (13.64%), or plexiform (4.55%), always gave rise to the perforators. The vascular roots of the ASA were the source of the perforators in 95.45% of the brains. The latter vessels arose from the anterolateral arteries in 50% of the cases. The anastomoses involving the perforators, which were present in 40.91% of the brains, varied in diameter between 100 microm and 350 microm (mean, 169 microm). The perforating vessels gave rise to the side branches in 95.45% of the brains that varied in diameter from 100 microm to 300 microm (average, 161 microm). The perforators usually entered the foramen cecum and the anterior median sulcus, and then continued close and parallel to the raphe of the medulla. The perforators can be compressed by a VA aneurysm, which was found in one among the 71 examined patients with cerebral aneurysms. CONCLUSIONS The obtained data give additional information about the vascular anatomy of the pontomedullary region.


Brain Structure & Function | 2016

Cytoarchitecture of the human lateral occipital cortex: mapping of two extrastriate areas hOc4la and hOc4lp

Aleksandar Malikovic; Katrin Amunts; Axel Schleicher; Hartmut Mohlberg; Milenko Kujovic; Nicola Palomero-Gallagher; Simon B. Eickhoff; Karl Zilles

The microstructural correlates of the functional segregation of the human lateral occipital cortex are largely unknown. Therefore, we analyzed the cytoarchitecture of this region in ten human post-mortem brains using an observer-independent and statistically testable parcellation method to define the position and extent of areas in the lateral occipital cortex. Two new cytoarchitectonic areas were found: an anterior area hOc4la and a posterior area hOc4lp. hOc4la was located behind the anterior occipital sulcus in rostral and ventral portions of this region where it occupies the anterior third of the middle and inferior lateral occipital gyri. hOc4lp was found in caudal and dorsal portions of this region where it extends along the superior and middle lateral occipital gyri. The cytoarchitectonic areas were registered to 3D reconstructions of the corresponding brains, which were subsequently spatially normalized to the Montreal Neurological Institute reference space. Continuous probabilistic maps of both areas based on the analysis of ten brains were generated to characterize their inter-subject variability in location and size. The maps of hOc4la and hOc4lp were then used as seeds for meta-analytic connectivity modeling and quantitative functional decoding to identify their co-activation patterns and assignment to functional domains. Convergent evidence from their location, topography, size, functional domains and connectivity indicates that hOc4la and hOc4lp are the potential anatomical correlates of the functionally defined lateral occipital areas LO-1 and LO-2.


Experimental Brain Research | 2002

Perceptual segregation of overlapping shapes activates posterior extrastriate visual cortex in man

Jonas Larsson; Katrin Amunts; Balázs Gulyás; Aleksandar Malikovic; Karl Zilles; Per E. Roland

Objects in natural scenes are rarely seen in isolation, but are usually overlapping or partially occluding other objects. To recognize individual objects, the visual system must be able to segregate overlapping objects from one another. Evidence from lesions in humans and monkeys suggest that perceptual segregation of occluded or overlapping objects involves extrastriate visual cortex. In monkeys, area V4 has been shown to play an important role in recognizing occluded or poorly salient shapes. In humans, a retinotopic homologue of ventral V4 (V4v) has been described, but it is not known whether this area is also functionally homologous to area V4 in monkeys. In this study, we tried to localize the visual cortical regions involved in perceptual segregation of overlapping shapes using positron emission tomography (PET). Regional cerebral blood flow (rCBF) was measured in seven subjects while they discriminated the relative areas of simultaneously presented rectangular shapes. In the control condition, the shapes were displayed without overlaps; in a second condition, the shapes overlapped each other partially. In a third condition, the shapes did not overlap but had been reduced in salience by adding random noise to the stimuli. Contrasting the overlapping shape condition with the control condition identified a single region in the left posterior lateral occipital cortex. The rCBF in this region also increased, though more weakly, during discrimination of shapes embedded in noise, relative to the control condition. The region activated by segregation of overlapping shapes was located in the posterior occipital cortex close to the anterior border of area V2, near the average location of human V4v as determined by retinotopic mapping studies. The activation of this region of extrastriate visual cortex by a task that involved segregation of overlapping shapes is consistent with monkey V4 and human V4v being functionally homologous. We conclude that discrimination of overlapping shapes involves in particular a region of extrastriate visual cortex located in the left lateral occipital cortex and that this region may correspond to human V4v.


Anatomical Science International | 2012

Occipital sulci of the human brain: variability and morphometry

Aleksandar Malikovic; Biljana Vucetic; Milan Milisavljević; Jovo Tosevski; Predrag Sazdanovic; Bojan Milojevic; Slobodan Malobabic

The external morphology of the occipital lobe was investigated in 15 human post-mortem brains (30 hemispheres) fixed in formalin. We identified, described and measured the lengths of nine major human occipital sulci and five variable ones, comparing both types between individuals and hemispheres. Morphological variability of human occipital sulci is related to interindividual and interhemispheric differences in their presence, origin, type, segmentation, intersection and length. The major occipital sulci, particularly the parieto-occipital, the calcarine, the inferior lateral occipital and the anterior occipital sulci, as well as two points of their intersections (cuneal point and intersection of the transverse occipital and superior occipital sulcus) may be used as reliable anatomical landmarks for the location of architectonically and functionally defined human visual areas (V1, V2, V3, V3A, V5/MT+, LO1 and LO2) and during less invasive neurosurgical procedures in the cases of focal lesions within the occipital lobe. Two lateral occipital sulci (inferior and superior) were defined on the lateral surface of the occipital lobe. The variable lunate sulcus was studied and combining our results with those from histological and functional imaging studies, we suggest that the lunate sulci of human and nonhuman primates are not homologous.

Collaboration


Dive into the Aleksandar Malikovic's collaboration.

Top Co-Authors

Avatar

Katrin Amunts

University of Düsseldorf

View shared research outputs
Top Co-Authors

Avatar

Karl Zilles

University of Düsseldorf

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Axel Schleicher

University of Düsseldorf

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Balázs Gulyás

Nanyang Technological University

View shared research outputs
Researchain Logo
Decentralizing Knowledge