Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Aleksander A. Mathé is active.

Publication


Featured researches published by Aleksander A. Mathé.


The International Journal of Neuropsychopharmacology | 2005

The antidepressant effect of running is associated with increased hippocampal cell proliferation

Astrid Bjørnebekk; Aleksander A. Mathé; Stefan Brené

A common trait of antidepressant drugs, electroconvulsive treatment and physical exercise is that they relieve depression and up-regulate neurotrophic factors as well as cell proliferation and neurogenesis in the hippocampus. In order to identify possible biological underpinnings of depression and the antidepressant effect of running, we analysed cell proliferation, the level of the neurotrophic factor BDNF in hippocampus and dynorphin in striatum/accumbens in depressed Flinders Sensitive Line rats (FSL) and Flinders Resistant Line (FRL) rats with and without access to running-wheels. The FRL strain exhibited a higher daily running activity than the FSL strain. Wheel-running had an antidepressant effect in the depressed FSL rats, as indicated by the forced swim test. In the hippocampus, cell proliferation was lower in the depressed rats compared to the control FRL rats but there was no difference in BDNF or dynorphin levels in striatum/accumbens. After 5 wk of running, cell proliferation increased in FSL but not in FRL rats. BDNF and dynorphin mRNA levels were increased in FRL but not to the same extent in the in FSL rats; thus, increased BDNF and dynorphin levels were correlated to the running activity but not to the antidepressant effect of running. The only parameter that was associated to basal level of depression and to the antidepressant effect was cell proliferation in the hippocampus. Thus, suppression of cell proliferation in the hippocampus could constitute one of the mechanisms that underlie depression, and physical activity might be an efficient antidepressant.


Physiology & Behavior | 2007

Running is rewarding and antidepressive.

Stefan Brené; Astrid Bjørnebekk; Elin Åberg; Aleksander A. Mathé; Lars Olson; Martin Werme

Natural behaviors such as eating, drinking, reproduction and exercise activate brain reward pathways and consequently the individual engages in these behaviors to receive the reward. However, drugs of abuse are even more potent in activating the reward pathways. Rewarding behaviors and addictive drugs also affect other parts of the brain not directly involved in the mediation of reward. For instance, running increases neurogenesis in hippocampus and is beneficial as an antidepressant in a genetic animal model of depression and in depressed humans. Here we discuss and compare neurochemical and functional changes in the brain after addictive drugs and exercise with a focus on brain reward pathways and hippocampus.


Neuropsychopharmacology | 2012

The Neuropeptide Y (NPY)-ergic System is Associated with Behavioral Resilience to Stress Exposure in an Animal Model of Post-Traumatic Stress Disorder

Hagit Cohen; Tianmin Liu; Nitsan Kozlovsky; Zeev Kaplan; Joseph Zohar; Aleksander A. Mathé

Converging evidence implicates the regulatory neuropeptide Y (NPY) in anxiety- and depression-related behaviors. The present study sought to assess whether there is an association between the magnitude of behavioral responses to stress and patterns of NPY in selected brain areas, and subsequently, whether pharmacological manipulations of NPY levels affect behavior in an animal model of PTSD. Animals were exposed to predator-scent stress for 15u2009min. Behaviors were assessed with the elevated plus maze and acoustic startle response tests 7 days later. Preset cutoff criteria classified exposed animals according to their individual behavioral responses. NPY protein levels were assessed in specific brain regions 8 days after the exposure. The behavioral effects of NPY agonist, NPY-Y1-receptor antagonist, or placebo administered centrally 1u2009h post-exposure were evaluated in the same manner. Immunohistochemical technique was used to detect the expression of the NPY, NPY-Y1 receptor, brain-derived neurotrophic factor, and GR 1 day after the behavioral tests. Animals whose behavior was extremely disrupted (EBR) selectively displayed significant downregulation of NPY in the hippocampus, periaqueductal gray, and amygdala, compared with animals whose behavior was minimally (MBR) or partially (PBR) disrupted, and with unexposed controls. One-hour post-exposure treatment with NPY significantly reduced prevalence rates of EBR and reduced trauma-cue freezing responses, compared with vehicle controls. The distinctive pattern of NPY downregulation that correlated with EBR as well as the resounding behavioral effects of pharmacological manipulation of NPY indicates an intimate association between NPY and behavioral responses to stress, and potentially between molecular and psychopathological processes, which underlie the observed changes in behavior. The protective qualities attributed to NPY are supported by the extreme reduction of its expression in animals severely affected by the stressor and imply a role in promoting resilience and/or recovery.


Progress in Neuro-psychopharmacology & Biological Psychiatry | 2006

Adult life behavioral consequences of early maternal separation are alleviated by escitalopram treatment in a rat model of depression

Aram El Khoury; Susanne H.M. Gruber; Arne Mørk; Aleksander A. Mathé

In order to study the gene-environment interaction as well as investigate prophylactic/ameliorative effects of early intervention on development of adult life psychopathology, we superimposed maternal separation on an animal model of depression the Flinders Sensitive Line (FSL) rats and their controls the Flinders Resistant Line (FRL) rats and studied behavior following treatment with escitalopram. Animals were maternally separated for 180 min/day from postnatal day 2 (PND 2) to 14. The control groups were left undisturbed. Treatment with escitalopram or vehicle admixed to food pellets was commenced on PND 43 and continued until PND 73. The Porsolt swim test was carried out on PND 65. Baseline FRL/FSL differences in body weight and swim duration, considered to be an inverse index of depression, were found (ps<0.001). In the FSL, maternal separation further decreased swim duration (p<0.001) while the FRL strain was unaffected. Escitalopram had no effect in FRL, but increased swim duration in both maternally non-separated and separated FSL (p<0.05 and p=0.001; respectively). These results confirm the strain differences between the FSL and FRL and demonstrate that the long-term effects of early life adverse experience will to a significant degree depend on the genetic make-up of an individual. Finally, antidepressant treatment reversed behavioral abnormalities caused by genetic and environmental factors. This study highlights the importance of genetic factors in susceptibility to early life adverse events, and demonstrates the efficiency of early antidepressant treatment in reversing behavioral abnormalities, both those caused by genetic factors and by environmental factors.


Progress in Neuro-psychopharmacology & Biological Psychiatry | 2011

Animal models of depression and anxiety: What do they tell us about human condition?

Inga D. Neumann; Gregers Wegener; Judith R. Homberg; H Cohen; David A. Slattery; J Zohar; Jocelien Olivier; Aleksander A. Mathé

While modern neurobiology methods are necessary they are not sufficient to elucidate etiology and pathophysiology of affective disorders and develop new treatments. Achievement of these goals is contingent on applying cutting edge methods on appropriate disease models. In this review, the authors present four rodent models with good face-, construct-, and predictive-validity: the Flinders Sensitive rat line (FSL); the genetically anxious High Anxiety-like Behavior (HAB) line; the serotonin transporter knockout 5-HTT(-/-) rat and mouse lines; and the post-traumatic stress disorder (PTSD) model induced by exposure to predator scent, that they have employed to investigate the nature of depression and anxiety.


Neuroreport | 2000

Mapping the differences in the brain concentration of brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) in an animal model of depression.

Francesco Angelucci; Luigi Aloe; Patricia Jiménez Vasquez; Aleksander A. Mathé

Antidepressant drugs as well as electroconvulsive stimuli can significantly influence brain concentrations of neurotrophic factors. However, it is not known whether the baseline brain concentrations of neurotrophic factors are altered in human subjects suffering from affective disorders or whether there are sex differences in concentrations of neurotrophins in human brain. In order to elucidate some of these questions, we measured by ELISA brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) in an animal model of depression, the Flinders Sensitive Line (FSL) rats and their controls, the Flinders Resistant Line (FRL). Altered BDNF and NGF concentrations were found in frontal cortex, occipital cortex, and hypothalamus of depressed FSL compared to FRL control rats. Furthermore, different levels of these neurotrophins were also found in the male and female brain. Cumulatively these observations suggest that BDNF and NGF may play a role in depression and, hypothetically, different brain regional concentrations of BDNF and NGF in male and female animals may be relevant to gender differences in vulnerability to depression.


Psychopharmacology | 2005

Long-term citalopram administration reduces responsiveness of HPA axis in patients with major depression: relationship with S-citalopram concentrations in plasma and cerebrospinal fluid (CSF) and clinical response

Georg Nikisch; Aleksander A. Mathé; Adelheid Czernik; Jutta Thiele; Jürgen Bohner; Chin B. Eap; Hans Ågren; Pierre Baumann

RationaleA dysregulation of the hypothalamic–pituitary–adrenal (HPA) axis is a well-documented neurobiological finding in major depression. Moreover, clinically effective therapy with antidepressant drugs may normalize the HPA axis activity.ObjectiveThe aim of this study was to test whether citalopram (R/S-CIT) affects the function of the HPA axis in patients with major depression (DSM IV).MethodsTwenty depressed patients (11 women and 9 men) were challenged with a combined dexamethasone (DEX) suppression and corticotropin-releasing hormone (CRH) stimulation test (DEX/CRH test) following a placebo week and after 2, 4, and 16 weeks of 40xa0mg/day R/S-CIT treatment.ResultsThe results show a time-dependent reduction of adrenocorticotrophic hormone (ACTH) and cortisol response during the DEX/CRH test both in treatment responders and nonresponders within 16 weeks. There was a significant relationship between post-DEX baseline cortisol levels (measured before administration of CRH) and severity of depression at pretreatment baseline. Multiple linear regression analyses were performed to identify the impact of psychopathology and hormonal stress responsiveness and R/S-CIT concentrations in plasma and cerebrospinal fluid (CSF). The magnitude of decrease in cortisol responsivity from pretreatment baseline to week 4 on drug [delta-area under the curve (AUC) cortisol] was a significant predictor (p<0.0001) of the degree of symptom improvement following 16 weeks on drug (i.e., decrease in HAM-D21 total score). The model demonstrated that the interaction of CSF S-CIT concentrations and clinical improvement was the most powerful predictor of AUC cortisol responsiveness.ConclusionThe present study shows that decreased AUC cortisol was highly associated with S-CIT concentrations in plasma and CSF. Therefore, our data suggest that the CSF or plasma S-CIT concentrations rather than the R/S-CIT dose should be considered as an indicator of the selective serotonergic reuptake inhibitors (SSRIs) effect on HPA axis responsiveness as measured by AUC cortisol response.


The International Journal of Neuropsychopharmacology | 2010

Inverse correlation of brain and blood BDNF levels in a genetic rat model of depression

Pia Høgh Plougmann; Heidi Kaastrup Müller; Aleksander A. Mathé; Raben Rosenberg; Gregers Wegener

There is accumulating evidence that brain-derived neurotrophic factor (BDNF) plays a critical role in the pathophysiology of depression. Decreased serum levels have been reported in major depression, and a correlation between BDNF reduction and the severity of the disease was found. Moreover, in post-mortem hippocampal tissue, increased levels of BDNF immunoreactivity have been reported in subjects treated with antidepressants compared to untreated subjects. These findings indicate parallel changes in brain and serum BDNF levels during depression. BDNF has been measured in selected brain areas in several animal models. In investigations between Flinders Sensitive Line (FSL) and Flinders Resistant Line (FRL) rats, a genetic rat model of depression, no differences were found in BDNF levels in the frontal cortex and hippocampus, areas believed to be core brain regions in depression. However, to our knowledge brain and serum BDNF levels have never been reported in parallel for any psychiatric disease model. Therefore, we examined the levels of BDNF in whole blood, serum, cerebrospinal fluid (CSF), hippocampus, and frontal cortex in male FSL and FRL rats. BDNF levels in serum and whole blood of FSL rats were significantly increased compared to FRL rats. In contrast, in the hippocampus the BDNF level was significantly decreased in FSL compared to FRL rats while no differences were found in the frontal cortex and CSF. The differential regulation of the BDNF levels in hippocampus, serum, and whole blood in FSL/FRL rats adds to the hypothesis that neurotrophic factors are related to the pathophysiology of depression.


Journal of Psychopharmacology | 2007

Chronic heroin and cocaine abuse is associated with decreased serum concentrations of the nerve growth factor and brain-derived neurotrophic factor

Francesco Angelucci; Valerio Ricci; Massimiliano Pomponi; G. Conte; Aleksander A. Mathé; P. Tonali; Pietro Bria

Chronic cocaine and heroin users display a variety of central nervous system (CNS) dysfunctions including impaired attention, learning, memory, reaction time, cognitive flexibility, impulse control and selective processing. These findings suggest that these drugs may alter normal brain functions and possibly cause neurotoxicity. Neurotrophins are a class of proteins that serve as survival factors for CNS neurons. In particular, nerve growth factor (NGF) plays an important role in the survival and function of cholinergic neurons while brain-derived neurotrophic factor (BDNF) is involved in synaptic plasticity and in the maintenance of midbrain dopaminergic and cholinergic neurons. In the present study, we measured by enzyme-linked immunosorbent assay (ELISA) the NGF and BDNF levels in serum of three groups of subjects: heroin-dependent patients, cocaine-dependent patients and healthy volunteers. Our goal was to identify possible change in serum neurotrophins in heroin and cocaine users. BDNF was decreased in heroin users whereas NGF was decreased in both heroin and cocaine users. These findings indicate that NGF and BDNF may play a role in the neurotoxicity and addiction induced by these drugs. In view of the neurotrophin hypothesis of schizophrenia the data also suggest that reduced level of neurotrophins may increase the risk of developing psychosis in drug users.


European Neuropsychopharmacology | 2005

Effect of chronic olanzapine treatment on nerve growth factor and brain-derived neurotrophic factor in the rat brain

Francesco Angelucci; Luigi Aloe; A. Iannitelli; Susanne H.M. Gruber; Aleksander A. Mathé

Nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) are proteins involved in neuronal survival, neurite outgrowth and synapse formation. Recent observations suggest that treatment with typical and atypical antipsychotic drugs affect NGF and BDNF levels in the rat brain. The atypical antipsychotic olanzapine has a low incidence of side effects, such as extrapyramidal and anticholinergic symptoms. Since NGF and BDNF are involved in the regulation of cholinergic, dopaminergic and serotonergic neurons in the central nervous system (CNS) we hypothesized that chronic olanzapine treatment will influence the distribution of NGF and BDNF in the rat brain. To test this hypothesis we administered olanzapine for 29 days in the drinking water at the doses of 3 and 15 mg/kg body weight and measured the levels of NGF and BDNF in the brain of Wistar rats. Olanzapine increased NGF in the hippocampus, occipital cortex and hypothalamus. In contrast, olanzapine decreased BDNF in the hippocampus and frontal cortex. Although the significance of these findings is not clear, a heuristic hypothesis is that olanzapines clinical effects and a favorable side effect profile are in part mediated by neurotrophins.

Collaboration


Dive into the Aleksander A. Mathé's collaboration.

Top Co-Authors

Avatar

Susanne H.M. Gruber

Karolinska University Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Aram El Khoury

Karolinska University Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Cindy L. Ehlers

Scripps Research Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge