Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Aleksandr Aleksandrovich Nechaev is active.

Publication


Featured researches published by Aleksandr Aleksandrovich Nechaev.


Discrete Applied Mathematics | 2001

Complete weight enumerators of generalized Kerdock code and related linear codes over Galois ring

Aleksey S. Kuzmin; Aleksandr Aleksandrovich Nechaev

Abstract A generalized Kerdock code is a nonlinear (n,n 2 ,[(q−1)/q](n− n )) -code of length n=qm+1 over the field of q=2l elements (l⩾1,m is odd). It is a concatenation of some special (base) linear code over the Galois ring of characteristic 4 and Reed–Solomon code of dimension 2. Here the complete weight enumerators of Kerdock code, base linear code and their analogues for even m are described. Incidentally, the weight characteristics of linear recurrences with the distinguished characteristic polynomial over the pointed Galois ring are indicated. Methods of proofs are based on the properties of trace function in Galois ring and quadrics over the field of characteristic 2.


Lecture Notes in Computer Science | 2004

On Cyclic Top-Associative Generalized Galois Rings

Santos González; V. T. Markov; Consuelo Martínez; Aleksandr Aleksandrovich Nechaev; Ignacio F. Rúa

A Generalized Galois Ring (GGR) S is a finite nonassociative ring with identity of characteristic p n , for a prime number p, such that its top-factor \(\overline{S} = S/pS\) is a finite semifield. It is well known that if S is an associative Galois Ring (GR) then the set \(S^* = S \ pS\) is a finite multiplicative abelian group. This group is cyclic if and only if S is either a finite field, or a residual integer ring of odd characteristic or the ring ℤ4. A GGR is called top-associative if \(\overline{S}\) is a finite field. In this paper we study the conditions for a top-associative not associative GGR S to be cyclic.


Matematicheskie Voprosy Kriptografii [Mathematical Aspects of Cryptography] | 2010

Восстановление линейной рекурренты над примарным кольцом вычетов по ее усложнению. II

Алексей Сергеевич Кузьмин; Aleksei Sergeevich Kuz'min; Г Б Маршалко; G B Marshalko; Александр Александрович Нечаев; Aleksandr Aleksandrovich Nechaev


Diskretnaya Matematika | 2006

Приближение булевых функций мономиальными@@@Approximation of Boolean functions by monomial functions

Алексей Сергеевич Кузьмин; Aleksei Sergeevich Kuz'min; Виктор Тимофеевич Марков; V. T. Markov; Александр Александрович Нечаев; Aleksandr Aleksandrovich Nechaev; Алексей Борисович Шишков; Aleksei Borisovich Shishkov


Diskretnaya Matematika | 2001

Каноническая система образующих унитарного полиномиального идеала над коммутативным артиновым цепным кольцом@@@A canonical system of generators of a unitary polynomial ideal over a commutative Artinian chain ring

Александр Александрович Нечаев; Aleksandr Aleksandrovich Nechaev; Д А Михайлов; D A Mikhailov


Diskretnaya Matematika | 1998

Рекурсивные МДР-коды и рекурсивно дифференцируемые квазигруппы@@@Recursive MDS-codes and recursively differentiable quasigroups

С Гонсалес; Santos González; Е Коусело; Elena Couselo; Виктор Тимофеевич Марков; V. T. Markov; Александр Александрович Нечаев; Aleksandr Aleksandrovich Nechaev


Diskretnaya Matematika | 2014

Использование неассоциативных группоидов для реализации процедуры открытого распределения ключей@@@Application of non-associative groupoids to the realization of an open key distribution procedure

Сергей Юрьевич Катышев; Sergey Yur'evich Katyshev; Виктор Тимофеевич Марков; V. T. Markov; Александр Александрович Нечаев; Aleksandr Aleksandrovich Nechaev


Matematicheskie Voprosy Kriptografii [Mathematical Aspects of Cryptography] | 2014

Цикловые типы семейств полилинейных рекуррент и датчики псевдослучайных чисел

Александр Васильевич Михалeв; A. V. Mikhalev; Александр Александрович Нечаев; Aleksandr Aleksandrovich Nechaev


Journal of Mathematical Sciences | 2017

Cryptographic Algorithms on Groups and Algebras

A.S. Kuz'min; V. T. Markov; Alexander A. Mikhalev; A. V. Mikhalev; Aleksandr Aleksandrovich Nechaev


Journal of Mathematical Sciences | 2017

Comparing Finite Abelian Groups from the Standpoint of Their Cryptographic Applications

A. V. Galatenko; Aleksandr Aleksandrovich Nechaev; A. E. Pankrat’ev

Collaboration


Dive into the Aleksandr Aleksandrovich Nechaev's collaboration.

Top Co-Authors

Avatar

V. T. Markov

Moscow State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

A.S. Kuz'min

Moscow State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge