Aleksandra Jovanovic
University of Belgrade
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Aleksandra Jovanovic.
Journal of Endocrinology | 2013
Milan Obradovic; Predrag Bjelogrlic; Manfredi Rizzo; Niki Katsiki; Mohamed A. Haidara; Alan J Stewart; Aleksandra Jovanovic; Esma R. Isenovic
Obesity is associated with aberrant sodium/potassium-ATPase (Na(+)/K(+)-ATPase) activity, apparently linked to hyperglycemic hyperinsulinemia, which may repress or inactivate the enzyme. The reduction of Na(+)/K(+)-ATPase activity in cardiac tissue induces myocyte death and cardiac dysfunction, leading to the development of myocardial dilation in animal models; this has also been documented in patients with heart failure (HF). During several pathological situations (cardiac insufficiency and HF) and in experimental models (obesity), the heart becomes more sensitive to the effect of cardiac glycosides, due to a decrease in Na(+)/K(+)-ATPase levels. The primary female sex steroid estradiol has long been recognized to be important in a wide variety of physiological processes. Numerous studies, including ours, have shown that estradiol is one of the major factors controlling the activity and expression of Na(+)/K(+)-ATPase in the cardiovascular (CV) system. However, the effects of estradiol on Na(+)/K(+)-ATPase in both normal and pathological conditions, such as obesity, remain unclear. Increasing our understanding of the molecular mechanisms by which estradiol mediates its effects on Na(+)/K(+)-ATPase function may help to develop new strategies for the treatment of CV diseases. Herein, we discuss the latest data from animal and clinical studies that have examined how pathophysiological conditions such as obesity and the action of estradiol regulate Na(+)/K(+)-ATPase activity.
Nitric Oxide | 2016
Julijana Stanimirovic; Milan Obradovic; Aleksandra Jovanovic; Emina Sudar-Milovanovic; Sonja Zafirovic; Samantha J. Pitt; Alan J. Stewart; Esma R. Isenovic
Men and women differ substantially with regard to the severity of insulin resistance (IR) but the underlying mechanism(s) of how this occurs is poorly characterized. We investigated whether a high fat (HF) diet resulted in sex-specific differences in nitrite/nitrate production and lipid metabolism and whether these variances may contribute to altered obesity-induced IR. Male and female Wistar rats were fed a standard laboratory diet or a HF diet for 10 weeks. The level of plasma nitrite/nitrate, as well as free fatty acid (FFA), in both plasma and liver lysates were assessed. The levels of inducible nitric oxide (NO) synthase (iNOS), p65 subunit of NFκB, total and phosphorylated forms of Akt, mTOR and PDK-1 in lysates, and the levels of glucose transporter 2 (Glut-2) and fatty acid translocase/cluster of differentiation 36 (FAT/CD36) in plasma membrane fractions of liver were assessed. HF-fed male rats exhibited a significant increase in plasma nitrite/nitrate, and hepatic FFA and FAT/CD36 levels compared with controls. They also displayed a relative decrease in iNOS and Glut-2 levels in the liver. Phosphorylation of Akt (at Ser(473) and Thr(308)), mTOR and PDK-1 was also reduced. HF-fed female rats exhibited increased levels of NFκB-p65 in liver compared with controls, while levels of Glut-2, FAT/CD36 and Akt phosphorylation at Thr(308) and PDK-1 were decreased. Our results reveal that altered lipid and glucose metabolism in obesity, lead to altered iNOS expression and nitrite/nitrate production. It is likely that this mechanism contributes to sex-specific differences in the development of IR.
Clinical Chemistry and Laboratory Medicine | 2015
Milan Obradovic; Andreja Trpkovic; Vladan Bajic; Sanja Soskic; Aleksandra Jovanovic; Julijana Stanimirovic; Milos Panic; Esma R. Isenovic
Abstract C-reactive protein (CRP) is a marker of inflammation. Atherosclerosis is now recognized as inflammatory disease, and it seems that CRP directly contributes to atherogenesis. Oxidation of low-density lipoprotein (LDL) molecule increases the uptake of lipid products by macrophages leading to cholesterol accumulation and subsequent foam cell formation. The elevated levels of high sensitivity CRP (hsCRP) and oxidized LDL (OxLDL) in the blood were found to be associated with cardiovascular diseases (CVD). In this review, we highlighted the evidence that CRP and OxLDL are involved in interrelated (patho) physiological pathways. The findings on association between hsCRP and OxLDL in the clinical setting will be also summarized.
Current Vascular Pharmacology | 2017
Djordje Radak; Niki Katsiki; Ivana Resanovic; Aleksandra Jovanovic; Emina Sudar-Milovanovic; Sonja Zafirovic; Shaker A. Mousad; Esma R. Isenovic
Apoptosis may contribute to a significant proportion of neuron death following acute brain ischemia (ABI), but the underlying mechanisms are still not fully understood. Brain ischemia may lead to stroke, which is one of the main causes of long-term morbidity and mortality in both developed and developing countries. Therefore, stroke prevention and treatment is clinically important. There are two important separate areas of the brain during ABI: the ischemic core and the ischemic penumbra. The ischemic core of the brain experiences a sudden reduction of blood flow, just minutes after ischemic attack with irreversible injury and subsequent cell death. On the other hand, apoptosis within the ischemic penumbra may occur after several hours or days, while necrosis starts in the first hours after the onset of ABI in the ischemic core. ABI is characterized by key molecular events that initiate apoptosis in many cells, such as overproduction of free radicals, Ca2+ overload and excitotoxicity. These changes in cellular homeostasis may trigger either necrosis or apoptosis, which often depends on cell type, cell age, and location in the brain. Apoptosis results in DNA fragmentation, degradation of cytoskeletal and nuclear proteins, cross-linking of proteins, formation of apoptotic bodies, expression of ligands for phagocytic cell receptors and finally uptake by phagocytic cells. This review focuses on recent findings based on animal and human studies regarding the apoptotic mechanisms of neuronal death following ABI and the development of potential neuroprotective agents that reduce morbidity. The effects of statins on stroke prevention and treatment as well as on apoptotic mediators are also considered.
Molecular and Cellular Endocrinology | 2015
Milan Obradovic; Sonja Zafirovic; Aleksandra Jovanovic; Emina Sudar Milovanovic; Shaker A. Mousa; Milica Labudovic-Borovic; Esma R. Isenovic
The aim of this study was to investigate in vivo effects of estradiol on Na(+)/K(+)-ATPase activity/expression in high fat (HF) diet fed rats. Adult male Wistar rats were fed normally (Control, n = 7) or with a HF diet (Obese, n = 14) for 10 weeks. After 10 weeks, half of the obese rats were treated with estradiol (Obese + Estradiol, n = 7, 40 μg/kg, i.p.) as a bolus injection and 24 h after treatment all the rats were sacrificed. Estradiol in vivo in obese rats in comparison with obese non-treated rats led to a statistically significant increase in concentration of serum Na(+) (p < 0.05), Na(+)/K(+)-ATPase activity (p < 0.01), expression of α1 (p < 0.01) and α2 (p < 0.05) subunit of Na(+)/K(+)-ATPase, both PI3K subunits p85 (p < 0.01), p110 (p < 0.05), and association of IRS-1 with p85 (p < 0.05), while significantly decrease expression of AT1 (p < 0.05) and Rho A (p < 0.01) proteins. Our results suggest that estradiol in vivo in pathophysiological conditions, such as obesity accompanied with insulin resistance stimulates activity and expression of Na(+)/K(+)-ATPase by a mechanism that involves the participation of IRS-1/PI3K/Akt signaling. In addition, the decreasing level of AT1 and Rho A proteins estradiol probably attenuates the detrimental effect of obesity to decreased IRS-1/PI3K association and consequently reduce Na(+)/K(+)-ATPase activity/expression.
Mini-reviews in Medicinal Chemistry | 2015
Emina Sudar-Milovanovic; Milan Obradovic; Aleksandra Jovanovic; Bozidarka Zaric; Sonja Zafirovic; Anastasija Panic; Djordje Radak; Esma R. Isenovic
The amino acid, L-Arginine (L-Arg) plays an important role in the cardiovascular system. Data from the literature show that L-Arg is the only substrate for the production of nitric oxide (NO), from which L-Arg develops its effects on the cardiovascular system. As a free radical, NO is synthesized in all mammalian cells by L-Arg with the activity of NO synthase (NOS). In states of hypertension, diabetes, hypercholesterolemia and vascular inflammation a disorder occurs in the metabolic pathway of the synthesis of NO from L-Arg which all together bring alterations of blood vessels. Experimental results obtained on animals, as well as clinical studies show that L-Arg has an effect on thrombocytes, on the process of coagulation and on the fibrolytic system. This mini review represents a summary of the latest scientific animal and human studies related to L-Arg and its mechanisms of actions with a focus on the role of L-Arg via NO pathway in cardiovascular disorders. Moreover, here we present data from recent animal and clinical studies suggesting that L-Arg could be one of the possible therapeutic molecules for improving the treatment of different cardiovascular disorders.
Current Vascular Pharmacology | 2017
Aleksandra Jovanovic; Emina Sudar Milovanovic; Milan Obradovic; Samantha J. Pitt; Alan J. Stewart; Sonja Zafirovic; Julijana Stanimirovic; Djordje Radak; Esma R. Isenovic
BACKGROUND Overexpression of inducible nitric oxide synthase (iNOS) is a key link between high-fat (HF) diet induced obesity and cardiovascular disease. Oestradiol has cardioprotective effects that may be mediated through reduction of iNOS activity/expression. METHODS In the present study, female Wistar rats were fed a standard diet or a HF diet (42% fat) for 10 weeks. iNOS gene and protein expressions were measured in heart tissue. HF-fed rats exhibited a significant increase in cardiac iNOS mRNA by 695% (p<.05), iNOS protein level by 248% (p<0.01), without changes in nitrate/nitrite levels. Expression of CD36 protein in plasma membranes was increased by 37% (p<0.05), while the concentration of free fatty acids (FFA) was reduced by 25% (p<0.01) in HF-fed rats. Expression of the p50 subunit of nuclear factor-kB (NFkB-p50) in heart was increased by 77% (p<0.01) in HF-fed rats. Expression of protein kinase B (Akt) and extracellular signalregulated kinases 1/2 (ERK1/2) were unchanged between the groups. There was a significant increase in the ratio of phospho-Akt/total Akt but not for phospho-ERK1/2/total ERK1/2 in HF-fed rats. Estrogen receptor-α levels (by 50%; p<0.05) and serum oestradiol concentrations (by 35%; p<0.05) were shown to be significantly reduced in HF-fed rats. RESULTS AND CONCLUSION Our results revealed that a HF diet led to increased iNOS expression, most likely via a mechanism involving Akt and NFκB-p50 proteins. Decreased levels of oestradiol and ERα protein in the HF-fed group, in combination with increased iNOS levels are consistent with the hypothesis that oestradiol has a cardioprotective effect through its ability to regulate iNOS expression.
Experimental and Clinical Endocrinology & Diabetes | 2015
E. Sudar Milovanovic; Aleksandra Jovanovic; M. Misirkic-Marjanovic; Lj. Vucicevic; K. Janjetovic; Esma R. Isenovic
The aim of this study was to examine the effects of ghrelin on regulation of cardiac inducible nitric oxide synthase (iNOS) activity/expression in high fat (HF), obese rats.For this study, male Wistar rats fed with HF diet (30% fat) for 4 weeks were injected every 24 h for 5 days intracerebroventricularly (ICV) with ghrelin (0.3 nmol/5 µl) or with an equal volume of phosphate buffered saline (PBS). Control rats were ICV injected with an equal volume of PBS. Glucose, insulin and nitric oxide (NO) concentrations were measured in serum, while arginase activity and citrulline concentrations were measured in heart lysate. Protein iNOS and regulatory subunit of nuclear factor-κB (NFκB-p65), phosphorylation of enzymes protein kinase B (Akt) at Ser(473), and extracellular signal-regulated kinases 1/2 (ERK1/2) at Tyr(202)/Tyr(204) were determined in heart lysate by Western blot. For gene expression of iNOS qRT-PCR was used.Results show significantly (p<0.01) higher serum NO production in ghrelin treated HF rats compared with HF rats. Ghrelin significantly reduced citrulline concentration (p<0.05) and arginase activity (p<0.01) in HF rats. In ghrelin treated HF rats, gene and protein expression of iNOS and NFκB-p65 levels were significantly (p<0.05) increased compared with HF rats. Increased phosphorylation of Akt (p<0.01) and decreased (p<0.05) ERK1/2 phosphorylation were detected in HF ghrelin treated rats compared with HF rats hearts.Results from this study indicate that exogenous ghrelin induces expression and activity of cardiac iNOS via Akt phosphorylation followed by NFκB activation in HF rats.
International Journal of Endocrinology | 2015
Zoran Gluvic; Emina Sudar; Jelena Tica; Aleksandra Jovanovic; Sonja Zafirovic; Ratko Tomasevic; Esma R. Isenovic
The aim of this study was to investigate the effect of levothyroxine (LT4) replacement therapy during three months on some parameters of metabolic syndrome and atherosclerosis in patients with increased thyroid-stimulating hormone (TSH) level. This study included a group of 30 female patients with TSH level >4 mIU/L and 15 matched healthy controls. Intima media complex thickness (IMCT) and peak systolic flow velocity (PSFV) of superficial femoral artery were determined by Color Doppler scan. In hypothyroid subjects, BMI, SBP, DBP, and TSH were significantly increased versus controls and decreased after LT4 administration. FT4 was significantly lower in hypothyroid subjects compared with controls and significantly higher by treatment. TC, Tg, HDL-C, and LDL-C were similar to controls at baseline but TC and LDL-C were significantly decreased by LH4 treatment. IMCT was significantly increased versus controls at baseline and significantly reduced by treatment. PSFV was similar to controls at baseline and significantly decreased on treatment. In this study, we have demonstrated the effects of LT4 replacement therapy during three months of treatment on correction of risk factors of metabolic syndrome and atherosclerosis.
Current Pharmaceutical Design | 2017
Emina Sudar-Milovanovic; Sonja Zafirovic; Aleksandra Jovanovic; Jovana Trebaljevac; Milan Obradovic; Desanka Cenic-Milosevic; Esma R. Isenovic
BACKGROUND Nitric oxide (NO) is a potential biochemical, cardio-metabolic risk marker. The production of NO is catalyzed by different isoforms of enzymes, NO synthases (NOS). An altered NO level is associated with obesity, insulin resistance (IR), diabetes and cardiovascular diseases (CVD). Activity of NOS and NO production are regulated by various hormones under physiological and pathophysiological condition. METHODS Data used for this review were obtained by searching the electronic database [PUBMED/MEDLINE 1984 - May 2016]. Additionally, abstracts from national and international diabetes and cardiovascular related meetings were searched. The main data search terms were: nitric oxide, nitric oxide synthase, cardio-metabolic risk, obesity, diabetes, cardiovascular disease, estradiol and insulin-like growth factor-1. RESULTS In this review, we summarize the recent literature data related to the regulation of endothelial NOS (eNOS), inducible (iNOS) activity/expression, and thereby NO production by the hormones: estradiol (E2), and insulin-like growth factor-1 (IGF-1). CONCLUSION Understanding the regulation of NO production by different hormones such as E2, and IGF-1 may provide novel and useful knowledge regarding how endothelial dysfunction (ED) is linked with cardio-metabolic alterations and diseases.