Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Aleksandra Marchwicka is active.

Publication


Featured researches published by Aleksandra Marchwicka.


The Journal of Steroid Biochemistry and Molecular Biology | 2012

Opposite regulation of vitamin D receptor by ATRA in AML cells susceptible and resistant to vitamin D-induced differentiation

Elzbieta Gocek; Aleksandra Marchwicka; Hanna Baurska; Agnieszka Chrobak; Ewa Marcinkowska

Some leukemic cell lines can be driven to differentiate to monocyte-like cells by 1,25-dihydroxyvitamin D(3) (1,25D) and to granulocyte-like cells by all-trans retinoic acid (ATRA). Acute myloid leukemias (AMLs) are heterogeneous blood malignancies characterized by a block at various stages of hematopoietic differentiation and there are more than 200 known chromosome translocations and mutations in leukemic cells of patients diagnosed with AML. Because of the multiplicity in the genetic lesions causing the disease, AMLs are particularly difficult to treat successfully. In particular, various AML cells to a variable degree respond to 1,25D-based differentiation and only one type of AML undergoes successfully ATRA-based differentiation therapy. In this paper we describe that AML cell line KG-1 is resistant to 1,25D-induced monocytic differentiation, while sensitive to ATRA-induced granulocytic differentiation. We show that KG-1 cells have very low level of VDR protein and that expression of VDR mRNA is upregulated by ATRA. We show for the first time that this regulation is cell context-specific, because in another AML cell line, HL60, VDR mRNA is downregulated by ATRA. ATRA-induced VDR protein in cytosol of KG-1 cells can be further activated by 1,25D to induce monocytic differentiation of these cells.


Frontiers in Oncology | 2014

Perspectives of differentiation therapies of acute myeloid leukemia: the search for the molecular basis of patients' variable responses to 1,25-dihydroxyvitamin D and vitamin D analogs

Aleksandra Marchwicka; Malgorzata Cebrat; Preetha Sampath; Łukasz Śnieżewski; Ewa Marcinkowska

The concept of differentiation therapy of cancer is ~40 years old. Despite many encouraging results obtained in laboratories, both in vitro and in vivo studies, the only really successful clinical application of differentiation therapy was all-trans-retinoic acid (ATRA)-based therapy of acute promyelocytic leukemia (APL). ATRA, which induces granulocytic differentiation of APL leukemic blasts, has revolutionized the therapy of this disease by converting it from a fatal to a curable one. However, ATRA does not work for other acute myeloid leukemias (AMLs). Since 1,25-dihydroxyvitamin D3 (1,25D) is capable of inducing monocytic differentiation of leukemic cells, the idea of treating other AMLs with vitamin D analogs (VDAs) was widely accepted. Also, some types of solid cancers responded to in vitro applied VDAs, and hence it was postulated that VDAs can be used in many clinical applications. However, early clinical trials in which cancer patients were treated either with 1,25D or with VDAs, did not lead to conclusive results. In order to search for a molecular basis of such unpredictable responses of AML patients toward VDAs, we performed ex vivo experiments using patient’s blast cells. Experiments were also performed using 1,25D-responsive and 1,25D-non-responsive cell lines, to study their mechanisms of resistance toward 1,25D-induced differentiation. We found that one of the possible reasons might be due to a very low expression level of vitamin D receptor (VDR) mRNA in resistant cells, which can be increased by exposing the cells to ATRA. Our considerations concerning the molecular mechanism behind the low VDR expression and its regulation by ATRA are reported in this paper.


Leukemia Research and Treatment | 2012

Regulation of Leukemic Cell Differentiation through the Vitamin D Receptor at the Levels of Intracellular Signal Transduction, Gene Transcription, and Protein Trafficking and Stability

Elzbieta Gocek; Hanna Baurska; Aleksandra Marchwicka; Ewa Marcinkowska

1α,25-Dihydroxyvitamin D3 (1,25(OH)2D) exerts its biological activities through vitamin D receptor (VDR), which is a member of the superfamily of steroid receptors, that act as ligand-dependent transcription factors. Ligated VDR in complex with retinoid X receptor (RXR) binds to regulatory regions of 1,25(OH)2D-target genes. 1,25(OH)2D is able to induce differentiation of leukemic blasts towards macrophage-like cells. Many different acute myeloid leukemia (AML) cell lines respond to 1,25(OH)2D by increasing CD14 cell surface receptor, some additionally upregulate CD11b and CD11c integrins. In untreated AML cells VDR protein is present in cytosol at a very low level, even though its mRNA is continuously expressed. Ligation of VDR causes protein stabilization and translocation to the cell nuclei, where it regulates transcription of target genes. Several important groups of genes are regulated by 1,25(OH)2D in HL60 cells. These genes include differentiation-related genes involved in macrophage function, as well as a gene regulating degradation of 1,25(OH)2D, namely CYP24A1. We summarize here the data which demonstrate that though some cellular responses to 1,25(OH)2D in AML cells are transcription-dependent, there are many others which depend on intracellular signal transduction, protein trafficking and stabilization. The final effect of 1,25(OH)2D action in leukemic cells requires all these acting together.


The Journal of Steroid Biochemistry and Molecular Biology | 2016

Regulation of vitamin D receptor expression by retinoic acid receptor alpha in acute myeloid leukemia cells.

Aleksandra Marchwicka; Malgorzata Cebrat; Agnieszka Łaszkiewicz; Łukasz Śnieżewski; Geoffrey Brown; Ewa Marcinkowska

Acute myeloid leukemia (AML) is the predominant acute leukemia among adults, characterized by an accumulation of malignant immature myeloid precursors. A very promising way to treat AML is differentiation therapy using either all-trans-retinoic acid (ATRA) or 1,25-dihydroxyvitamin D3 (1,25D), or the use of both these differentiation-inducing agents. However, the effect of combination treatment varies in different AML cell lines, and this is due to ATRA either down- or up-regulating transcription of vitamin D receptor (VDR) in the cells examined. The mechanism of transcriptional regulation of VDR in response to ATRA has not been fully elucidated. Here, we show that the retinoic acid receptor α (RARα) is responsible for regulating VDR transcription in AML cells. We have shown that a VDR transcriptional variant, originating in exon 1a, is regulated by RARα agonists in AML cells. Moreover, in cells with a high basal level of RARα protein, the VDR gene is transcriptionally repressed as long as RARα agonist is absent. In these cells down-regulation of the level of RARα leads to increased expression of VDR. We consider that our findings provide a mechanistic background to explain the different outcomes from treating AML cell lines with a combination of ATRA and 1,25D.


PLOS ONE | 2014

NADPH-Cytochrome P450 Reductase Is Regulated by All-Trans Retinoic Acid and by 1,25-Dihydroxyvitamin D3 in Human Acute Myeloid Leukemia Cells

Elz_bieta Gocek; Aleksandra Marchwicka; Kamila Bujko; Ewa Marcinkowska

Acute myeloid leukemia (AML) cell lines can be driven to differentiate to monocyte-like cells by 1,25- dihydroxyvitamin D3 (1,25D) and to granulocyte-like cells by all-trans-retinoic acid (ATRA). Both compounds activate their specific intracellular receptors, vitamin D receptor (VDR) and retinoic acid receptors (RARs) respectively. Inside the cells 1,25D is degraded to calcitrioic acid by a mitochondrial enzyme CYP24A1, while ATRA is degraded to several polar metabolites by CYP26. NADPH-cytochrome P450 oxidoreductase (POR) is a membrane-bound enzyme required for electron transfer to cytochrome P450 (CYP), vital in the processes of the metabolism of drugs and steroid production in humans. In this paper we report that POR in AML cells, from both cell lines and patients, is upregulated by ATRA and by 1,25D at the level of mRNA and protein. Partial silencing of POR in HL60 cells resulted in augmented differentiation response to 1,25D.


International Journal of Molecular Sciences | 2017

Diverse Regulation of Vitamin D Receptor Gene Expression by 1,25-Dihydroxyvitamin D and ATRA in Murine and Human Blood Cells at Early Stages of Their Differentiation

Sylwia Janik; Urszula Nowak; Agnieszka Łaszkiewicz; Anastasiia Satyr; Michal Majkowski; Aleksandra Marchwicka; Łukasz Śnieżewski; Klaudia Berkowska; Marian Gabryś; Malgorzata Cebrat; Ewa Marcinkowska

Vitamin D receptor (VDR) is present in multiple blood cells, and the hormonal form of vitamin D, 1,25-dihydroxyvitamin D (1,25D) is essential for the proper functioning of the immune system. The role of retinoic acid receptor α (RARα) in hematopoiesis is very important, as the fusion of RARα gene with PML gene initiates acute promyelocytic leukemia where differentiation of the myeloid lineage is blocked, followed by an uncontrolled proliferation of leukemic blasts. RARα takes part in regulation of VDR transcription, and unliganded RARα acts as a transcriptional repressor to VDR gene in acute myeloid leukemia (AML) cells. This is why we decided to examine the effects of the combination of 1,25D and all-trans-retinoic acid (ATRA) on VDR gene expression in normal human and murine blood cells at various steps of their development. We tested the expression of VDR and regulation of this gene in response to 1,25D or ATRA, as well as transcriptional activities of nuclear receptors VDR and RARs in human and murine blood cells. We discovered that regulation of VDR expression in humans is different from in mice. In human blood cells at early stages of their differentiation ATRA, but not 1,25D, upregulates the expression of VDR. In contrast, in murine blood cells 1,25D, but not ATRA, upregulates the expression of VDR. VDR and RAR receptors are present and transcriptionally active in blood cells of both species, especially at early steps of blood development.


Cell & Bioscience | 2016

Restored expression of vitamin D receptor and sensitivity to 1,25-dihydroxyvitamin D3 in response to disrupted fusion FOP2-FGFR1 gene in acute myeloid leukemia cells.

Aleksandra Marchwicka; Aoife Corcoran; Klaudia Berkowska; Ewa Marcinkowska

BackgroundAcute myeloid leukemia (AML) cells can be induced to undergo terminal differentiation with subsequent loss of tumorigenicity using 1,25-dihydroxyvitamin D3 (1,25D) alone or in combination with hematopoietic cytokines. KG1 cells are resistant to 1,25D-induced cell differentiation. These cells have the aberrant signal transduction resulting from a constitutively active fusion protein FOP2-FGFR1, a constitutively active STAT1 and a high level of interferon (IFN) stimulated genes (ISGs).MethodsIn this paper we report that in KG1 cells with constitutively activated protein FOP2-FGFR1 delivery of plasmid DNA disrupted FOP2-FGFR1 fusion gene.ResultsAs a consequence, STAT1 signal transduction pathway became switched off, the expression of vitamin D receptor (VDR) gene was increased and sensitivity to 1,25D-induced differentiation was restored. The activation of ISGs in KG1 cells resulted in resistance to externally added IFNs, and also this effect was reversed in cells with disrupted FOP2-FGFR1 fusion gene.DiscussionIn this paper we have documented for the first time a link between constitutively active STAT1 signal transduction pathway, high level of ISGs and low expression of VDR gene.ConclusionsWe show in this paper that delivery of plasmid DNA to the cells may disrupt fusion gene FOP2-FGFR1 which occurs in a disease entity called 8p11 myeloproliferative syndrome. Inhibition of the FOP2-FGFR1 signal transduction pathway restored sensitivity of the cells to 1,25D-induced cell differentiation.


International Journal of Molecular Sciences | 2018

Regulation of Expression of CEBP Genes by Variably Expressed Vitamin D Receptor and Retinoic Acid Receptor α in Human Acute Myeloid Leukemia Cell Lines

Aleksandra Marchwicka; Ewa Marcinkowska

All-trans-retinoic acid (ATRA) and 1α,25-dihydroxyvitamin D (1,25D) are potent inducers of differentiation of myeloid leukemia cells. During myeloid differentiation specific transcription factors are expressed at crucial developmental stages. However, precise mechanism controlling the diversification of myeloid progenitors is largely unknown, CCAAT/enhancer-binding protein (C/EBP) transcription factors have been characterized as key regulators of the development and function of the myeloid system. Past data point at functional redundancy among C/EBP family members during myeloid differentiation. In this study, we show that in acute myeloid leukemia (AML) cells, high expression of vitamin D receptor gene (VDR) is needed for strong and sustained upregulation of CEBPB gene, while the moderate expression of VDR is sufficient for upregulation of CEBPD in response to 1,25D. The high expression level of the gene encoding for retinoic acid receptor α (RARA) allows for high and sustained expression of CEBPB, which becomes decreased along with a decrease of RARA expression. Expression of CEBPB induced by ATRA is accompanied by upregulated expression of CEBPE with similar kinetics. Our results suggest that CEBPB is the major VDR and RARA-responsive gene among the CEBP family, necessary for expression of genes connected with myeloid functions.


Expert Opinion on Therapeutic Patents | 2016

Therapeutic use of selective synthetic ligands for retinoic acid receptors: a patent review

Aleksandra Marchwicka; Alan Cunningham; Ewa Marcinkowska; Geoffrey Brown

ABSTRACT Introduction: Differentiation therapy using all-trans retinoic acid (ATRA) revolutionised the treatment of acute promyelocytic leukaemia to such an extent that it is now one of the most curable types of leukaemia, with ATRA and anthracycline-based chemotherapy providing cure rates above 80%. Isotretinoin is used to treat chronic acne. Here, we examine the information described in recent patents and the extent to which new findings are influencing extending retinoid-based differentiation therapy to other cancers, as well as the development of new therapies for other disorders. Areas covered: A search has been performed on the literature and worldwide patents filed during 2014 to the present time, focusing on synthetic agonists and antagonists of retinoic acid receptors and novel compositions for the delivery of these agents. Expert opinion: New potential therapeutic applications have been described, including lung, breast and head and neck cancers, T cell lymphoma and neurodegenerative, metabolic, ophthalmic, muscle, and inflammatory disorders. Recent patents have described the means to maximise retinoid activity. Two decades of efforts to extend retinoid-based therapies have been disappointing and new synthetic retinoids, target diseases and modes of delivery may well resolve this long standing issue.


Oncology Reports | 2012

Studies on the mechanisms of superagonistic pro-differentiating activities of side-chain modified analogs of vitamin D2

Hanna Baurska; Aleksandra Marchwicka; Anna Kłopot; Andrzej Kutner; Ewa Marcinkowska

Collaboration


Dive into the Aleksandra Marchwicka's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Malgorzata Cebrat

Polish Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Geoffrey Brown

University of Birmingham

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Agnieszka Chrobak

Polish Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge