Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Aleksandra Samecka-Cymerman is active.

Publication


Featured researches published by Aleksandra Samecka-Cymerman.


PLOS ONE | 2015

Diversification of nitrogen sources in various tundra vegetation types in the high arctic

Grzegorz Skrzypek; Bronisław Wojtuń; Dorota Richter; Dariusz Jakubas; Katarzyna Wojczulanis-Jakubas; Aleksandra Samecka-Cymerman

Low nitrogen availability in the high Arctic represents a major constraint for plant growth, which limits the tundra capacity for carbon retention and determines tundra vegetation types. The limited terrestrial nitrogen (N) pool in the tundra is augmented significantly by nesting seabirds, such as the planktivorous Little Auk (Alle alle). Therefore, N delivered by these birds may significantly influence the N cycling in the tundra locally and the carbon budget more globally. Moreover, should these birds experience substantial negative environmental pressure associated with climate change, this will adversely influence the tundra N-budget. Hence, assessment of bird-originated N-input to the tundra is important for understanding biological cycles in polar regions. This study analyzed the stable nitrogen composition of the three main N-sources in the High Arctic and in numerous plants that access different N-pools in ten tundra vegetation types in an experimental catchment in Hornsund (Svalbard). The percentage of the total tundra N-pool provided by birds, ranged from 0–21% in Patterned-ground tundra to 100% in Ornithocoprophilous tundra. The total N-pool utilized by tundra plants in the studied catchment was built in 36% by birds, 38% by atmospheric deposition, and 26% by atmospheric N2-fixation. The stable nitrogen isotope mixing mass balance, in contrast to direct methods that measure actual deposition, indicates the ratio between the actual N-loads acquired by plants from different N-sources. Our results enhance our understanding of the importance of different N-sources in the Arctic tundra and the used methodological approach can be applied elsewhere.


Journal of Toxicology and Environmental Health | 2000

BIOINDICATION OF HEAVY METALS WITH AQUATIC MACROPHYTES: THE CASE OF A STREAM POLLUTED WITH POWER PLANT SEWAGES IN POLAND

Aleksandra Samecka-Cymerman; Alexander J. Kempers

The Kozi Brod (left tributary of the Biala Przemsza, east of Katowice) flows in a highly industrial coal-mining area dominated by the power plant of Siersza. Concentrations of the microelements nickel (Ni), chromium (Cr), cobalt (Co), zinc (Zn), manganese (Mn), lead (Pb), cadmium (Cd), copper (Cu), barium (Ba), aluminum (Al), vanadium (V), and strontium (Sr), as well as the macronutrients nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), magnesium (Mg), iron (Fe), and sulfur (S), were measured in water and plants of the Kozi Brod. The collected plants were: Myosotis palustris L. Nathorst, Galium palustre L., Mentha rotundifolia L. Huds., Mentha aquatica L., Berula erecta (Huds.) Coville, Cardamine amara L., Epilobium angustifolium L., Geranium palustre L., Lysimachia vulgaris L., Crepis paludosa L. Much., Calitriche verna L., Solanum dulcamara L., and the aquatic moss Hygrohypnum ochraceum (Turn.) Loesk. These plants were used to evaluate the spatial distribution of elements in the Kozi Brod and contained elevated levels of Co, Cd, Zn, Ni, Mn, Al, Pb, and Cu. Significant correlations between concentrations of Cd, Zn, and Mn in water and plants indicate the potential of these species for pollution monitoring.


Chemosphere | 2010

Bioindication capacity of metal pollution of native and transplanted Pleurozium schreberi under various levels of pollution

Grzegorz Kosior; Aleksandra Samecka-Cymerman; Krzysztof Kolon; Alexander J. Kempers

During a period of 90d assays were carried out with the moss Pleurozium schreberi transplanted from an uncontaminated control site to 27 sites selected in one of the most polluted regions of Upper Silesia (Poland). The native mosses of this species were collected from the polluted sites. Concentrations of Cd, Cr, Cu, Pb and Zn were determined in P. schreberi and in the soil of all of the sites. The sites were divided into more and less polluted ones. The obtained results indicate that the native P. schreberi from the more polluted sites accumulated significantly more Cd, Cr, Cu, Pb and Zn than the transplanted moss from the same sites. The transplanted P. schreberi from the less polluted sites accumulated significantly more Cr, Pb, Zn, significantly less Cu and comparable amounts of Cd, as compared to the native moss. The selection of native versus transplant P. schreberi as a bioindicator depends on the level of pollution.


Polar Biology | 2011

Sanionia uncinata (Hedw.) loeske as bioindicator of metal pollution in polar regions

Aleksandra Samecka-Cymerman; Bronisław Wojtuń; Krzysztof Kolon; Alexander J. Kempers

The length of gametophytes in the moss Sanionia uncinata and concentrations of the elements Cd, Co, Cr, Cu, Fe, Mn, Na, Ni, Pb, V and Zn in this moss and in the parent rock material were measured in West Spitsbergen (Svalbard). Samples were collected at different distances from the seashore from pure colonies in a wet moss tundra, a moderately wet moss and herb tundra, and a dry rock and terrestrial tundra. Not any statistical relation (PCCA) between concentration of elements in mosses and type of tundra habitat could be found. The principal component and classification analysis (PCCA) ordination revealed that S. uncinata from sites the most close, the most remote and on an intermediary distance from the seashore differentiated by the value of factor 1, which relates negatively to concentrations of Cd, Co, Cr, Cu, Fe, Pb and V. S. uncinata from sites situated the most close to and the most distant from the seashore was differentiated by the value of factor 2, which was negatively related to concentrations of Na, Ni and Mn in this moss. The established model points that Na, Mn, Cu, Ni and Zn were accumulated by S. uncinata mostly from sea spray.


Journal of Chemical Ecology | 2010

Market Basket Analysis: A New Tool in Ecology to Describe Chemical Relations in the Environment—A Case Study of the Fern Athyrium distentifolium in the Tatra National Park in Poland

Aleksandra Samecka-Cymerman; Andrzej Stankiewicz; Krzysztof Kolon; Alexander J. Kempers; R.S.E.W. Leuven

In this study, the novel data mining technique Market Basket Analysis (MBA) was applied for the first time in biogeochemical and ecological investigations. The method was tested on the fern Athyrium distentifolium, in which we measured concentrations of the elements Ca, Cd, Cr, Cu, Fe, K, Mg, Mn, Na, Ni, Pb, and Zn. Plants were sampled from sites with different types of bedrock in the Tatra National Park in Poland. MBA was used to investigate whether specimens of Athyrium distentifolium that contain elevated levels of certain elements occur more frequently on a specific type of bedrock and to identify relationships between the type of bedrock and the concentrations of the elements in this fern. The results were compared with those of the commonly used principal component and classification analysis (PCCA) technique. MBA and PCCA ordination both yielded distinct groups of ferns growing on different types of bedrock. Although the results of MBA and PCCA were similar, MBA has the advantage of being independent of the size of the data set. In addition, MBA revealed not only dominant elements but, in the case of limestone bedrock, also showed very low concentrations of Cd, Fe, Mn, and Pb in ferns growing on this type of parent material. MBA, thus, appeared to be a promising data mining method to reveal chemical relations in the environment as well as the accumulation of chemical elements in bioindicators. This technique can be used to reveal associations and correlations among items in large data sets collected on a national or even larger scale.


Hydrobiologia | 2015

Development of comprehensive river typology based on macrophytes in the mountain-lowland gradient of different Central European ecoregions

Szymon Jusik; Krzysztof Szoszkiewicz; Jerzy Mirosław Kupiec; Iga Lewin; Aleksandra Samecka-Cymerman

The aim of the study was to identify the vegetation pattern in the different types of watercourses basing on survey in reference conditions in a wide geographical gradient, including mountain, upland and lowland rivers. We tested relationship between composition of macrophytes to environmental variables including: altitude, slope, catchment area, geology of valley, land use, hydromorphological features, water physical and chemical measurements. Analysis based on 109 pristine river sites located throughout major types of rivers in Central Europe. Qualitative and quantitative plant surveys were carried out between 2005 and 2013. Based on TWINSPAN classification and DCA analysis, six macrophyte types were distinguished. The lowland sites were divided into the following three types: humic rivers and two types of siliceous rivers depending on the catchment area, including medium-large and small rivers. The mountain and upland rivers were divided into three geological types: siliceous, calcareous and gravel. We found that the variation of macrophyte communities was determined by several habitat factors (mainly altitude, flow type, riverbed granulometry, conductivity and alkalinity), whereas the spatial factor was rather limited; further, the plant diversity was not reflected accurately by the European ecoregion approach.


Polar Biology | 2013

A survey of metal concentrations in higher plants, mosses, and lichens collected on King George Island in 1988

Bronisław Wojtuń; Krzysztof Kolon; Aleksandra Samecka-Cymerman; Mateusz Jasion; Alexander J. Kempers

Antarctica is considered to be one of the least polluted regions on earth, and therefore, it is important to survey and control the level of contamination. Antarctic vegetation is very sparse and is essentially restricted to seashore oases and nunataks. Therefore, any data concerning metal levels in plants and lichens are of crucial value for this area. Our first goal was to determine metal concentrations in two higher plants and the most dominant species of mosses and lichens collected in 1988. We then compared the results of our survey with recent studies employing similar methodology. In our study, Cr, Cu, Fe, Ni, Pb, V, and Zn concentrations in mosses, C. quitensis and D. antarctica were also higher than typical values for mosses and vascular plants from unpolluted areas indicating anthropogenic influence. Mosses were determined to be better bioindicators of metals than lichens. Hg concentrations in mosses were significantly higher than those in shoots of C. quitensis and D. antarctica. Increases in Cr, Pb, and V concentrations over time were observed in moss when concentrations from samples collected in 1988 were compared with more recent data from other studies. Our results for King George Island may apply at least to all the maritime Antarctic where climate and plant communities are similar.


Chemosphere | 2013

Decreasing concentrations of metals in sphagnum mosses in ombrotrophic mires of the sudety mountains (sw poland) since late 1980s

Bronisław Wojtuń; Aleksandra Samecka-Cymerman; Krzysztof Kolon; Alexander J. Kempers

In this investigation we focus on the evaluation of changes in metal pollution between 1986 until 2011 by Sphagnum species as bioindicators in 100 km part of the Sudety mountains influenced by the former Black Triangle Region. Concentrations of Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb and Zn were measured in various Sphagnum species all from ombrotrophic bogs in the Sudety mountains (SW Poland). The tested hypothesis was that overall improvements in pollution control in the former Black Triangle Region between 1986 until recent reduced the amount of metals deposited and accumulated by these plants. Concentrations of Cd, Cr, Cu, Fe, Pb and Zn in Sphagnum species were very high in 1986 indicating a heavy pollution of the examined bogs in this period, and significantly higher than in samples collected in 2011. The PCCA ordination showed the similar pattern in all bogs. In 2011 concentration of the Co was significantly higher in hollow species and concentration of Mn was significantly higher in those from hummocks. Differences between hollow/hummock sites were more important than species-specific abilities of Sphagnum mosses to accumulate metals. Species from hollows were better bioindicators of Co and those from hummocks were better bioindicators of Mn pollution.


Environmental Science and Pollution Research | 2016

Bioaccumulation of macro- and trace elements by European frogbit (Hydrocharis morsus-ranae L.) in relation to environmental pollution

Ludmiła Polechońska; Aleksandra Samecka-Cymerman

The aim of present study was to investigate the level of trace metals and macroelements in Hydrocharis morsus-ranae collected from regions differing in the degree and type of pollution. Concentrations of 17 macro- and microelements were determined in roots and shoots of European frogbit as well as in water and bottom sediments from 30 study sites. Plants differed in concentrations of elements and bioaccumulation capacity depending on the characteristics of dominant anthropogenic activities in the vicinity of the sampling site. Shoots of H. morsus-ranae growing in the vicinity of organic chemistry plants and automotive industry contained particularly high levels of Cd, Co, and S. Plants from area close to heat and power plant, former ferrochrome industry and new highway, were distinguished by the highest concentrations of Cr, Cu, and Pb. European frogbit from both these regions contained more Fe, Hg, Mn, Ni, and Zn than plants from agricultural and recreational areas. The concentrations of alkali metals and Co, Fe, and N in H. morsus-ranae were elevated in relation to the natural content in macrophytes irrespectively to their content in the environment. Based on the values of Bioaccumulation and Translocation Factors, European frogbit is an accumulator for Co, Cr, Cu, Fe, K, Mn, Ni, Pb, and Zn and a good candidate for phytoremediation of water polluted with Co, Cu, Hg, K, Mn, and Ni. The amount of Co and Mn removed from water and accumulated in the plant biomass during the vegetation season was considerably high.


Ecotoxicology and Environmental Safety | 2014

Mercury in Pleurozium schreberi and Polytrichum commune from areas with various levels of Hg pollution – an accumulation and desorption experiment with microscopic observations

Krzysztof Zawadzki; Katarzyna Sokołowska; Aleksandra Samecka-Cymerman; Krzysztof Kolon; Anna Dubińska; Alexander J. Kempers

Because of its high mobility in ecosystems, mercury is one of the main toxic threats to the environment, and its concentration must be carefully controlled. To fulfill this need, we selected terrestrial mosses with different characteristic life forms: orthotropic and endohydric Polytrichum commune and plagiotropic and ectohydric Pleurozium schreberi. The concentrations of mercury were determined in both species growing together at sites situated approximately 0.75, 1.5, 3 and 6km to the north, south, east and west, respectively of five known mercury polluters. The mercury concentrations reflected the emissions produced by the surrounding industry, reaching values of 0.44mgkg(-1) in P. schreberi and 0.79mgkg(-1) in P. commune in the vicinity of the chlor-alkali industry. To determine how long a load of Hg would remain in the mosses after mercury emitters restricted releases of Hg to the atmosphere, accumulation and desorption experiments were performed. We compared the two moss species collected from clean and moderately and heavily mercury-polluted sites. After eight days of exposure to mercury, P. schreberi accumulated up to 25mgkg(-1) of Hg, and P. commune accumulated up to 31mgkg(-1). Both in the field and in the experiment, P. commune accumulated significantly higher concentrations of Hg than did P. schreberi, most likely because of its surface morphology, which is likely to enhance the capture of metal from the atmosphere. After sixteen days of exposure, mercury changed the structure of the plasma membrane and affected organelles such as the nuclei and chloroplasts, leading to cell disintegration and death. The negative effects of mercury on the functioning of living cells appeared first in the older leaves of P. schreberi. After 64 days growing in the absence of Hg, P. schreberi clearly retained only 10-14% of the initially accumulated Hg, while P. commune retained 10-21%.

Collaboration


Dive into the Aleksandra Samecka-Cymerman's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge