Aleksandra Wisłowska-Stanek
Medical University of Warsaw
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Aleksandra Wisłowska-Stanek.
Pharmacology, Biochemistry and Behavior | 2006
Anna Skórzewska; Andrzej Bidziński; Małgorzata Lehner; Danuta Turzyńska; Aleksandra Wisłowska-Stanek; Alicja Sobolewska; Janusz Szyndler; Piotr Maciejak; Ewa Taracha; Adam Płaźnik
The aim of this paper was to examine changes in rat emotional behavior, and to find the brain structures, which are involved in the mediation of behavioral effects, related to the repeated administration of glucocorticoids. The effects of acute and chronic pretreatment of rats with two doses of corticosterone (5 and 20 mg/kg) were analyzed in two models of fear responses: neophobia-like behavior in the open field test, and freezing reaction in the conditioned fear test. Behavioral effects of repeated glucocorticoid administration were compared to changes in blood total corticosterone concentration, and expression of immediate early gene (c-Fos) in brain structures. It was found that acute administration of corticosterone (90 min before tests) enhanced rat exploratory behavior, and decreased freezing reaction. On the other hand, repeated administration of corticosterone (for 25 days, the final injection 90 min before contextual fear conditioning training) decreased plasma corticosterone concentration, inhibited exploratory behavior, enhanced freezing responses on retest and produced a complex pattern of changes in c-Fos expression, stimulated by exposure of rats to the aversively conditioned context. Aversive context induced c-Fos in the magnocellular neurons of the hypothalamic paraventricular nucleus (mPVN), dentate gyrus (DG), cingulate cortex area 1 (Cg1), and primary motor cortex (M1). In rats chronically treated with corticosterone this effect was attenuated in the mPVN and DG, enhanced in the M1, and additionally observed in the CA1, CA2 layers of the hippocampus, and in the central nucleus of amygdala (CeA), in comparison to control animals not subjected to contextual fear test. In sum, the present data suggest that chronic corticosterone treatment enhances the activity of primary motor cortex and CeA with subsequent improvement of memory of aversive events, and simultaneously stimulates a negative feedback mechanism operating in PVN with ensuing decrease in blood corticosterone concentration.
Neuroscience Letters | 2008
Janusz Szyndler; Piotr Maciejak; Danuta Turzyńska; Alicja Sobolewska; Małgorzata Lehner; Ewa Taracha; Jerzy Walkowiak; Anna Skórzewska; Aleksandra Wisłowska-Stanek; Adam Hamed; Andrzej Bidziński; Adam Płaźnik
It is not well recognized how disturbances in the local metabolism of some amino acids, especially glutamate and GABA, may lead to seizures. In the presented study, we have examined changes in the hippocampal steady state concentrations of amino acids involved in pentylenetetrazole-kindled and freely moving rats. It was found that in the kindled animals, the concentration of alanine, arginine, glutamate, aspartate and taurine was increased in the interictal period of seizures compared to the control group, whereas kindling reduced the extracellular levels of GABA. No differences between kindled and not-kindled animals in the glycine, histidine and glutamine levels were present. There also appeared an over fourfold increase of the Glu/GABA ratio, a theoretical marker of the neuronal excitation level, in the kindled animals. A multivariate classification tree analysis showed that the hippocampal concentration of taurine, together with GABA and Glu, had the relatively largest prediction accuracy in discriminating between kindled and non-kindled animals, suggesting a specific role of these amino acids in the shaping of a new equilibrium between excitatory and inhibitory processes in the hippocampus of kindled animals.
Behavioural Brain Research | 2008
Małgorzata Lehner; Ewa Taracha; Anna Skórzewska; Danuta Turzyńska; Alicja Sobolewska; Piotr Maciejak; Janusz Szyndler; Adam Hamed; Andrzej Bidziński; Aleksandra Wisłowska-Stanek; Adam Płaźnik
The aim of the study was to examine the neurochemical background of differences in the individual responses to conditioned aversive stimuli, using the strength of a rat conditioned freezing response (the contextual fear test), as a discriminating variable. It was shown that low responders (LR), i.e. rats with duration of a freezing response one standard error, or more, below the mean value, had a higher activity of the M2 cortical area, and the median raphe nucleus (c-Fox expression), in comparison to the high responders (HR), i.e. rats with the duration of a freezing response one standard error, or more, above the mean value. These animals had also stronger 5-HT- and CRF-related immunostaining in the M2 area, and increased concentration of GABA in the basolateral nucleus of amygdala (in vivo microdialysis). The LR group vocalized more during test session in the aversive band, and had higher serum levels of corticosterone, examined 10 min after test session. It was shown that different natural patterns of responding to conditioned aversive stimuli are associated with different involvement of brain structures and with dissimilar neurochemical mechanisms.
Neuropharmacology | 2009
Anna Skórzewska; Andrzej Bidziński; Adam Hamed; Małgorzata Lehner; Danuta Turzyńska; Alicja Sobolewska; Janusz Szyndler; Piotr Maciejak; Aleksandra Wisłowska-Stanek; Adam Płaźnik
The effects of intracerebroventricular injections of CRF and a non-selective CRF receptor antagonist, alpha-helical CRF((9-41)), on the release of glutamate, aspartate, and GABA in the central nucleus of the amygdala (CeA), were examined in the course of testing rat anxiety-like behaviour in the conditioned fear test (a freezing response), using the microdialysis technique. It was found that CRF (1 microg/rat), given to animals exposed to the stress of novelty only, insignificantly increased the glutamate concentration in the CeA, up to 200% of the control level. In the fear-conditioned animals, the influence of CRF on the local concentration of aspartate, glutamate, and Glu/GABA ratio was much more pronounced (up to a 400% increase above the baseline level of aspartate concentration), preceded an increased expression of anxiety-like responses, and appeared as early as 15 min after the drug administration. The intracerebroventricular administration of alpha-helical CRF((9-41)) (10 microg/rat) significantly decreased the rat freezing responses and increased the local concentration of GABA during the first 30 min of observation. In sum, these are new findings, which show an important role of CRF in the CeA in the regulation of fear-controlled amino acids release and suggest an involvement of amino acids in the central nucleus of the amygdala in the effects of this neurohormone on the expression of conditioned fear.
Behavioural Brain Research | 2013
Aleksandra Wisłowska-Stanek; Małgorzata Lehner; Anna Skórzewska; Paweł Krząścik; Piotr Maciejak; Janusz Szyndler; Andrzej Ziemba; Adam Płaźnik
This study assessed the mechanisms underlying the behavioral differences between high- (HR) and low-anxiety (LR) rats selected for their behavior in the contextual fear test (i.e., the duration of the freezing response was used as a discriminating variable). Rats were subjected to chronic restraint stress (21 days, 3h daily). We found that in the HR group, chronic restraint stress decreased rat activity in the Porsolt test and reduced the concentration of corticosterone in the prefrontal cortex. The behavioral changes were accompanied by a lower expression of alpha-2 GABA-A receptor subunits in the secondary motor cortex (M2 area) and in the dentate gyrus of the hippocampus (DG) compared to LR restraint animals. Moreover, restraint stress increased the density of alpha-2 GABA-A subunits in the basolateral amygdala (BLA) in HR rats and decreased the expression of these subunits in the DG and M2 areas compared to the HR control group. The present results suggest that, in HR rats exposed to chronic restraint stress, the function of hippocampal and cortical GABAergic neurotransmission is attenuated and that this effect could have important influences on the functioning of the hypothalamic-pituitary-adrenal axis and on depressive symptoms.
Neurobiology of Learning and Memory | 2010
Małgorzata Lehner; Aleksandra Wisłowska-Stanek; Ewa Taracha; Piotr Maciejak; Janusz Szyndler; Anna Skórzewska; Danuta Turzyńska; Alicja Sobolewska; Adam Hamed; Andrzej Bidziński; Adam Płaźnik
In this study, we investigated how midazolam and d-cycloserine regulate the tonic activity and/or phasic reactivity of brain neurotransmitter systems to fear-evoking stimuli in rats with varying intensities of a fear response. We used a new animal model composed of high (HR) and low (LR) anxiety rats, selected according to their behaviour in the contextual fear test (i.e., the duration of a freezing response was used as a discriminating variable). In these rats, we examined the effects of both drugs on the release of glutamate and GABA in the basolateral amygdala (BLA) during the first extinction trial of a conditioned fear test. The results showed that administration of d-cycloserine (15 mg/kg, i.p.) significantly enhanced the inhibition of an aversive context-induced freezing response observed during the extinction session in HR and LR rats. In contrast, midazolam (0.75 mg/kg, i.p.) accelerated the attenuation of fear responses only in HR rats. The less anxious behaviour of LR animals given saline was accompanied by elevated basal levels of glutamate in the BLA, in comparison with HR rats, and a stronger elevation of GABA in response to contextual fear. In HR animals, the pretreatment of rats with d-cycloserine and midazolam significantly increased the local concentration of GABA and inhibited the expression of contextual fear. These findings suggest that animals more vulnerable to stress have innate deficits in brain systems that control the activity of the BLA mediating the central effect of stress. These results contribute to our understanding of observed individual differences in the effects of anxiolytic drugs among patients with anxiety disorders.
Epilepsy & Behavior | 2009
Janusz Szyndler; Piotr Maciejak; Danuta Turzyńska; Alicja Sobolewska; Ewa Taracha; Anna Skórzewska; Małgorzata Lehner; Andrzej Bidziński; Adam Hamed; Aleksandra Wisłowska-Stanek; Paweł Krząścik; Adam Płaźnik
c-Fos protein immunocytochemistry was used to map the brain structures recruited during the evolution of seizures that follows repeated administration of a subconvulsive dose (35mg/kg, ip) of pentylenetetrazol in rats. c-Fos appeared earliest in nucleus accumbens shell, piriform cortex, prefrontal cortex, and striatum (stages 1 and 2 of kindling in comparison to control, saline-treated animals). At the third stage of kindling, central amygdala nuclei, entorhinal cortex, and lateral septal nuclei had enhanced concentrations of c-Fos. At the fourth stage of kindling, c-Fos expression was increased in basolateral amygdala and CA1 area of the hippocampus. Finally, c-Fos labeling was enhanced in the dentate gyrus of the hippocampus only when tonic-clonic convulsions were fully developed. The most potent changes in c-Fos were observed in dentate gyrus, piriform cortex, CA1, lateral septal nuclei, basolateral amygdala, central amygdala nuclei, and prefrontal cortex. Piriform cortex, entorhinal cortex, prefrontal cortex, lateral septal nuclei, and CA3 area of the hippocampus appeared to be the brain structures selectively involved in the process of chemically induced kindling of seizures.
Hormones and Behavior | 2014
Anna Skórzewska; Małgorzata Lehner; Aleksandra Wisłowska-Stanek; Paweł Krząścik; Andrzej Ziemba; Adam Płaźnik
The aim of this study was to examine changes in rat emotional behavior and determine differences in the expression of GABA-A receptor alpha-2 subunits in brain structures of low- (LR) and high-anxiety (HR) rats after the repeated corticosterone administration. The animals were divided into LR and HR groups based on the duration of their conditioned freezing in a contextual fear test. Repeated daily administration of corticosterone (20 mg/kg) for 21 days decreased activity in a forced swim test, reduced body weight and decreased prefrontal cortex corticosterone concentration in both the LR and HR groups. These effects of corticosterone administration were stronger in the HR group in comparison with the appropriate control group, and compared to LR treated and LR control animals. Moreover, in the HR group, chronic corticosterone administration increased anxiety-like behavior in the open field and elevated plus maze tests. The behavioral effects in HR rats were accompanied by a decrease in alpha-2 subunit density in the medial prefrontal cortex (prelimbic cortex and frontal association cortex) and by an increase in the expression of alpha-2 subunits in the basolateral amygdala. These studies have shown that HR rats are more susceptible to anxiogenic and depressive effects of chronic corticosterone administration, which are associated with modification of GABA-A receptor function in the medial prefrontal cortex and basolateral amygdala. The current data may help to better understand the neurobiological mechanisms responsible for individual differences in changes in mood and emotions induced by repeated administration of high doses of glucocorticoids or by elevated levels of these hormones associated with chronic stress or affective pathology.
Neurobiology of Learning and Memory | 2009
Małgorzata Lehner; Aleksandra Wisłowska-Stanek; Ewa Taracha; Piotr Maciejak; Janusz Szyndler; Anna Skórzewska; Danuta Turzyńska; Alicja Sobolewska; Adam Hamed; Andrzej Bidziński; Adam Płaźnik
We designed an animal model to examine the mechanisms of differences in individual responses to aversive stimuli. We used the rat freezing response in the context fear test as a discriminating variable: low responders (LR) were defined as rats with a duration of freezing response one standard error or more below the mean value, and high responders (HR) were defined as rats with a duration of freezing response one standard error or more above the mean value. We sought to determine the colocalisation of c-Fos and glucocorticoid receptors-immunoreactivity (GR-ir) in HR and LR rats subjected to conditioned fear training, two extinction sessions and re-learning of a conditioned fear. We found that HR animals showed a marked decrease in conditioned fear in the course of two extinction sessions (16 days) in comparison with the control and LR groups. The LR group exhibited higher activity in the cortical M2 and prelimbic areas (c-Fos) and had an increased number of cells co-expressing c-Fos and GR-ir in the M2 and medial orbital cortex after re-learning a contextual fear. HR rats showed increased expression of c-Fos, GR-ir and c-Fos/GR-ir colocalised neurons in the basolateral amygdala and enhanced c-Fos and GR-ir in the dentate gyrus (DG) in comparison with LR animals. Our data indicate that recovery of a context-related behaviour upon re-learning of contextual fear is accompanied in HR animals by a selective increase in c-Fos expression and GRs-ir in the DG area of the hippocampus.
Behavioural Brain Research | 2006
Małgorzata Lehner; Ewa Taracha; Anna Skórzewska; Piotr Maciejak; Aleksandra Wisłowska-Stanek; Małgorzata Zienowicz; Janusz Szyndler; Andrzej Bidziński; Adam Płaźnik
The aim of the study was to further explore the anatomical and neurochemical background of differences in response to the conditioned aversive stimuli. The different patterns of behavioral coping strategies (a conditioned freezing response and ultrasonic vocalization) were analyzed in animals differing in their response to the acute painful stimulation, a foot-shock (HS: high sensitivity rats, LS: low sensitivity rats, and MS: medium sensitivity rats, according to their behavior in the flinch-jump pre-test), and correlated with plasma corticosterone levels, expression of c-Fos protein, and distribution of 5-HT innervation, in different brain structures. It was found that HS rats showed significantly more freezing behavior, whereas LS animals vocalized much more intensively. The behavior of LS group (less freezing response and stronger vocalization) was related to activation of prefrontal cortex (PFCX), increased activity of adrenal glands and stronger serotonin immunostaining in the PFCX, in comparison with HS animals. The more passive strategy of coping with the aversive event of HS group was related to increased activity of amygdalar nuclei and some areas of the hippocampus, and stronger 5-HT immunostaining in the baso-lateral nucleus of the amygdala, in comparison with LS rats. The present findings suggest that animals more vulnerable to stress might have innate deficits in the activity of brain systems controlling the hypothalamic-pituitary-adrenal axis that would normally allow them to cope with stressful situations. It appears also that response to pain may determine other patterns of emotional behavior, probably reflecting different activation thresholds of some brain structures controlling anxiety, e.g. prefrontal and secondary motor cortex.