Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Aleksandrina Patyshakuliyeva is active.

Publication


Featured researches published by Aleksandrina Patyshakuliyeva.


Science | 2012

The Paleozoic Origin of Enzymatic Lignin Decomposition Reconstructed from 31 Fungal Genomes

Dimitrios Floudas; Manfred Binder; Robert Riley; Kerrie Barry; Robert A. Blanchette; Bernard Henrissat; Ángel T. Martínez; Robert Otillar; Joseph W. Spatafora; Jagjit S. Yadav; Andrea Aerts; Isabelle Benoit; Alex Boyd; Alexis Carlson; Alex Copeland; Pedro M. Coutinho; Ronald P. de Vries; Patricia Ferreira; Keisha Findley; Brian Foster; Jill Gaskell; Dylan Glotzer; Paweł Górecki; Joseph Heitman; Cedar Hesse; Chiaki Hori; Kiyohiko Igarashi; Joel A. Jurgens; Nathan Kallen; Phil Kersten

Dating Wood Rot Specific lineages within the basidiomycete fungi, white rot species, have evolved the ability to break up a major structural component of woody plants, lignin, relative to their non–lignin-decaying brown rot relatives. Through the deep phylogenetic sampling of fungal genomes, Floudas et al. (p. 1715; see the Perspective by Hittinger) mapped the detailed evolution of wood-degrading enzymes. A key peroxidase and other enzymes involved in lignin decay were present in the common ancestor of the Agaricomycetes. These genes then expanded through gene duplications in parallel, giving rise to white rot lineages. The enzyme family that enables fungi to digest lignin expanded around the end of the coal-forming Carboniferous period. Wood is a major pool of organic carbon that is highly resistant to decay, owing largely to the presence of lignin. The only organisms capable of substantial lignin decay are white rot fungi in the Agaricomycetes, which also contains non–lignin-degrading brown rot and ectomycorrhizal species. Comparative analyses of 31 fungal genomes (12 generated for this study) suggest that lignin-degrading peroxidases expanded in the lineage leading to the ancestor of the Agaricomycetes, which is reconstructed as a white rot species, and then contracted in parallel lineages leading to brown rot and mycorrhizal species. Molecular clock analyses suggest that the origin of lignin degradation might have coincided with the sharp decrease in the rate of organic carbon burial around the end of the Carboniferous period.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Genome sequence of the button mushroom Agaricus bisporus reveals mechanisms governing adaptation to a humic-rich ecological niche

Emmanuelle Morin; Annegret Kohler; Adam R. Baker; Marie Foulongne-Oriol; Vincent Lombard; László G. Nagy; Robin A. Ohm; Aleksandrina Patyshakuliyeva; Annick Brun; Andrea Aerts; Andy M. Bailey; Christophe Billette; Pedro M. Coutinho; Greg Deakin; Harshavardhan Doddapaneni; Dimitrios Floudas; Jane Grimwood; Kristiina Hildén; Ursula Kües; Kurt LaButti; Alla Lapidus; Erika Lindquist; Susan Lucas; Claude Murat; Robert Riley; Asaf Salamov; Jeremy Schmutz; Venkataramanan Subramanian; Han A. B. Wösten; Jianping Xu

Agaricus bisporus is the model fungus for the adaptation, persistence, and growth in the humic-rich leaf-litter environment. Aside from its ecological role, A. bisporus has been an important component of the human diet for over 200 y and worldwide cultivation of the “button mushroom” forms a multibillion dollar industry. We present two A. bisporus genomes, their gene repertoires and transcript profiles on compost and during mushroom formation. The genomes encode a full repertoire of polysaccharide-degrading enzymes similar to that of wood-decayers. Comparative transcriptomics of mycelium grown on defined medium, casing-soil, and compost revealed genes encoding enzymes involved in xylan, cellulose, pectin, and protein degradation are more highly expressed in compost. The striking expansion of heme-thiolate peroxidases and β-etherases is distinctive from Agaricomycotina wood-decayers and suggests a broad attack on decaying lignin and related metabolites found in humic acid-rich environment. Similarly, up-regulation of these genes together with a lignolytic manganese peroxidase, multiple copper radical oxidases, and cytochrome P450s is consistent with challenges posed by complex humic-rich substrates. The gene repertoire and expression of hydrolytic enzymes in A. bisporus is substantially different from the taxonomically related ectomycorrhizal symbiont Laccaria bicolor. A common promoter motif was also identified in genes very highly expressed in humic-rich substrates. These observations reveal genetic and enzymatic mechanisms governing adaptation to the humic-rich ecological niche formed during plant degradation, further defining the critical role such fungi contribute to soil structure and carbon sequestration in terrestrial ecosystems. Genome sequence will expedite mushroom breeding for improved agronomic characteristics.


BMC Genomics | 2014

The genome of the white-rot fungus Pycnoporus cinnabarinus : a basidiomycete model with a versatile arsenal for lignocellulosic biomass breakdown

Anthony Levasseur; Anne Lomascolo; Olivier Chabrol; Francisco J. Ruiz-Dueñas; Eva Boukhris-Uzan; François Piumi; Ursula Kües; Arthur F. J. Ram; Claude Murat; Mireille Haon; Isabelle Benoit; Yonathan Arfi; Didier Chevret; Elodie Drula; Min Jin Kwon; Philippe Gouret; Laurence Lesage-Meessen; Vincent Lombard; Jérôme Mariette; Céline Noirot; Joohae Park; Aleksandrina Patyshakuliyeva; Jean Claude Sigoillot; Ad Wiebenga; Han A. B. Wösten; Francis Martin; Pedro M. Coutinho; Ronald P. de Vries; Ángel T. Martínez; Christophe Klopp

BackgroundSaprophytic filamentous fungi are ubiquitous micro-organisms that play an essential role in photosynthetic carbon recycling. The wood-decayer Pycnoporus cinnabarinus is a model fungus for the study of plant cell wall decomposition and is used for a number of applications in green and white biotechnology.ResultsThe 33.6 megabase genome of P. cinnabarinus was sequenced and assembled, and the 10,442 predicted genes were functionally annotated using a phylogenomic procedure. In-depth analyses were carried out for the numerous enzyme families involved in lignocellulosic biomass breakdown, for protein secretion and glycosylation pathways, and for mating type. The P. cinnabarinus genome sequence revealed a consistent repertoire of genes shared with wood-decaying basidiomycetes. P. cinnabarinus is thus fully equipped with the classical families involved in cellulose and hemicellulose degradation, whereas its pectinolytic repertoire appears relatively limited. In addition, P. cinnabarinus possesses a complete versatile enzymatic arsenal for lignin breakdown. We identified several genes encoding members of the three ligninolytic peroxidase types, namely lignin peroxidase, manganese peroxidase and versatile peroxidase. Comparative genome analyses were performed in fungi displaying different nutritional strategies (white-rot and brown-rot modes of decay). P. cinnabarinus presents a typical distribution of all the specific families found in the white-rot life style. Growth profiling of P. cinnabarinus was performed on 35 carbon sources including simple and complex substrates to study substrate utilization and preferences. P. cinnabarinus grew faster on crude plant substrates than on pure, mono- or polysaccharide substrates. Finally, proteomic analyses were conducted from liquid and solid-state fermentation to analyze the composition of the secretomes corresponding to growth on different substrates. The distribution of lignocellulolytic enzymes in the secretomes was strongly dependent on growth conditions, especially for lytic polysaccharide mono-oxygenases.ConclusionsWith its available genome sequence, P. cinnabarinus is now an outstanding model system for the study of the enzyme machinery involved in the degradation or transformation of lignocellulosic biomass.


Environmental Microbiology | 2015

Bacillus subtilis attachment to Aspergillus niger hyphae results in mutually altered metabolism

Isabelle Benoit; Marielle H. van den Esker; Aleksandrina Patyshakuliyeva; Derek J. Mattern; Felix Blei; Miaomiao Zhou; Jan Dijksterhuis; Axel A. Brakhage; Oscar P. Kuipers; Ronald P. de Vries; Ákos T. Kovács

Interaction between microbes affects the growth, metabolism and differentiation of members of the microbial community. While direct and indirect competition, like antagonism and nutrient consumption have a negative effect on the interacting members of the population, microbes have also evolved in nature not only to fight, but in some cases to adapt to or support each other, while increasing the fitness of the community. The presence of bacteria and fungi in soil results in various interactions including mutualism. Bacilli attach to the plant root and form complex communities in the rhizosphere. Bacillus subtilis, when grown in the presence of Aspergillus niger, interacts similarly with the fungus, by attaching and growing on the hyphae. Based on data obtained in a dual transcriptome experiment, we suggest that both fungi and bacteria alter their metabolism during this interaction. Interestingly, the transcription of genes related to the antifungal and putative antibacterial defence mechanism of B. subtilis and A. niger, respectively, are decreased upon attachment of bacteria to the mycelia. Analysis of the culture supernatant suggests that surfactin production by B. subtilis was reduced when the bacterium was co-cultivated with the fungus. Our experiments provide new insights into the interaction between a bacterium and a fungus.


Environmental Microbiology | 2015

Uncovering the abilities of Agaricus bisporus to degrade plant biomass throughout its life cycle.

Aleksandrina Patyshakuliyeva; Harm Post; Miaomiao Zhou; Edita Jurak; Albert J. R. Heck; Kristiina Hildén; Mirjam A. Kabel; Miia R. Mäkelä; Maarten Altelaar; Ronald P. de Vries

The economically important edible basidiomycete mushroom Agaricus bisporus thrives on decaying plant material in forests and grasslands of North America and Europe. It degrades forest litter and contributes to global carbon recycling, depolymerizing (hemi-)cellulose and lignin in plant biomass. Relatively little is known about how A. bisporus grows in the controlled environment in commercial production facilities and utilizes its substrate. Using transcriptomics and proteomics, we showed that changes in plant biomass degradation by A. bisporus occur throughout its life cycle. Ligninolytic genes were only highly expressed during the spawning stage day 16. In contrast, (hemi-)cellulolytic genes were highly expressed at the first flush, whereas low expression was observed at the second flush. The essential role for many highly expressed plant biomass degrading genes was supported by exo-proteome analysis. Our data also support a model of sequential lignocellulose degradation by wood-decaying fungi proposed in previous studies, concluding that lignin is degraded at the initial stage of growth in compost and is not modified after the spawning stage. The observed differences in gene expression involved in (hemi-)cellulose degradation between the first and second flushes could partially explain the reduction in the number of mushrooms during the second flush.


PLOS ONE | 2015

Compost Grown Agaricus bisporus Lacks the Ability to Degrade and Consume Highly Substituted Xylan Fragments

Edita Jurak; Aleksandrina Patyshakuliyeva; Ronald P. de Vries; Harry Gruppen; Mirjam A. Kabel

The fungus Agaricus bisporus is commercially grown for the production of edible mushrooms. This cultivation occurs on compost, but not all of this substrate is consumed by the fungus. To determine why certain fractions remain unused, carbohydrate degrading enzymes, water-extracted from mushroom-grown compost at different stages of mycelium growth and fruiting body formation, were analyzed for their ability to degrade a range of polysaccharides. Mainly endo-xylanase, endo-glucanase, β-xylosidase and β-glucanase activities were determined in the compost extracts obtained during mushroom growth. Interestingly, arabinofuranosidase activity able to remove arabinosyl residues from doubly substituted xylose residues and α-glucuronidase activity were not detected in the compost enzyme extracts. This correlates with the observed accumulation of arabinosyl and glucuronic acid substituents on the xylan backbone in the compost towards the end of the cultivation. Hence, it was concluded that compost grown A. bisporus lacks the ability to degrade and consume highly substituted xylan fragments.


BMC Genomics | 2013

Carbohydrate utilization and metabolism is highly differentiated in Agaricus bisporus

Aleksandrina Patyshakuliyeva; Edita Jurak; Annegret Kohler; Adam R. Baker; Evy Battaglia; Wouter J.C. de Bruijn; Kerry S. Burton; Michael P. Challen; Pedro M. Coutinho; Daniel C. Eastwood; Birgit S. Gruben; Miia R. Mäkelä; Francis L. Martin; Marina Nadal; Joost van den Brink; Ad Wiebenga; Miaomiao Zhou; Bernard Henrissat; Mirjam A. Kabel; Harry Gruppen; Ronald P. de Vries

BackgroundAgaricus bisporus is commercially grown on compost, in which the available carbon sources consist mainly of plant-derived polysaccharides that are built out of various different constituent monosaccharides. The major constituent monosaccharides of these polysaccharides are glucose, xylose, and arabinose, while smaller amounts of galactose, glucuronic acid, rhamnose and mannose are also present.ResultsIn this study, genes encoding putative enzymes from carbon metabolism were identified and their expression was studied in different growth stages of A. bisporus. We correlated the expression of genes encoding plant and fungal polysaccharide modifying enzymes identified in the A. bisporus genome to the soluble carbohydrates and the composition of mycelium grown compost, casing layer and fruiting bodies.ConclusionsThe compost grown vegetative mycelium of A. bisporus consumes a wide variety of monosaccharides. However, in fruiting bodies only hexose catabolism occurs, and no accumulation of other sugars was observed. This suggests that only hexoses or their conversion products are transported from the vegetative mycelium to the fruiting body, while the other sugars likely provide energy for growth and maintenance of the vegetative mycelium. Clear correlations were found between expression of the genes and composition of carbohydrates. Genes encoding plant cell wall polysaccharide degrading enzymes were mainly expressed in compost-grown mycelium, and largely absent in fruiting bodies. In contrast, genes encoding fungal cell wall polysaccharide modifying enzymes were expressed in both fruiting bodies and vegetative mycelium, but different gene sets were expressed in these samples.


Fungal Genetics and Biology | 2014

An improved and reproducible protocol for the extraction of high quality fungal RNA from plant biomass substrates

Aleksandrina Patyshakuliyeva; Miia R. Mäkelä; Outi-Maaria Sietiö; Ronald P. de Vries; Kristiina Hildén

Isolation of high quantity and quality RNA is a crucial step in the detection of meaningful gene expression data. Obtaining intact fungal RNA from complex lignocellulosic substrates is often difficult, producing low integrity RNA which perform poorly in downstream applications. In this study we developed an RNA extraction method using CsCl centrifugation procedure, modified from previous reports and adapted for isolation of RNA from plant biomass. This method provided high level of integrity and good quantity of RNA which were suitable for reliable analyses of gene expression and produced consistent and reproducible results.


Biotechnology Letters | 2016

Improving cellulase production by Aspergillus niger using adaptive evolution

Aleksandrina Patyshakuliyeva; Mark Arentshorst; Iris E. Allijn; Arthur F. J. Ram; Ronald P. de Vries; Isabelle Benoit Gelber

ObjectivesTo evaluate the potential of adaptive evolution as a tool in generating strains with an improved production of plant biomass degrading enzymes.ResultsAn Aspergillus niger cellulase mutant was obtained by adaptive evolution. Physiological properties of this mutant revealed a five times higher cellulose production than the parental strain. Transcriptomic analysis revealed that the expression of noxR, encoding the regulatory subunit of the NADPH oxidase complex, was reduced in the mutant compared to the parental strain. Subsequent analysis of a noxR knockout strain showed the same phenotypic effect as observed for the evolution mutant, confirming the role of NoxR in cellulose degradation.ConclusionsAdaptive evolution is an efficient approach to modify a strain and activate genes involved in polysaccharide degradation.


Carbohydrate Polymers | 2015

Accumulation of recalcitrant xylan in mushroom-compost is due to a lack of xylan substituent removing enzyme activities of Agaricus bisporus

Edita Jurak; Aleksandrina Patyshakuliyeva; Dimitris Kapsokalyvas; Lia Xing; Marc A. M. J. van Zandvoort; Ronald P. de Vries; Harry Gruppen; Mirjam A. Kabel

The ability of Agaricus bisporus to degrade xylan in wheat straw based compost during mushroom formation is unclear. In this paper, xylan was extracted from the compost with water, 1M and 4M alkali. Over the phases analyzed, the remaining xylan was increasingly substituted with (4-O-methyl-)glucuronic acid and arabinosyl residues, both one and two arabinosyl residues per xylosyl residue remained. In the 1M and 4M KOH soluble solids of spent compost, 33 and 49 out of 100 xylosyl residues, respectively, were substituted. The accumulation of glucuronic acid substituents matched with the analysis that the two A. bisporus genes encoding for α-glucuronidase activity (both GH115) were not expressed in the A. bisporus mycelium in the compost during fruiting. Also, in a maximum likelihood tree it was shown that it is not likely that A. bisporus possesses genes encoding for the activity to remove arabinose from xylosyl residues having two arabinosyl residues.

Collaboration


Dive into the Aleksandrina Patyshakuliyeva's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Edita Jurak

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

Mirjam A. Kabel

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Harry Gruppen

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ad Wiebenga

Royal Netherlands Academy of Arts and Sciences

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge