Aleksey Komissarov
Saint Petersburg State University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Aleksey Komissarov.
PLOS Genetics | 2016
Shubha Vij; Heiner Kuhl; Inna S. Kuznetsova; Aleksey Komissarov; Andrey A. Yurchenko; Peter van Heusden; Siddharth Singh; Natascha May Thevasagayam; Sai Rama Sridatta Prakki; Kathiresan Purushothaman; Jolly M. Saju; Junhui Jiang; Stanley Kimbung Mbandi; Mario Jonas; Amy Hin Yan Tong; Sarah Mwangi; Doreen Lau; Si Yan Ngoh; Woei Chang Liew; Xueyan Shen; Lawrence S. Hon; James P Drake; Matthew Boitano; Richard Hall; Chen-Shan Chin; Ramkumar Lachumanan; Jonas Korlach; Vladimir A. Trifonov; Marsel R. Kabilov; Alexey E. Tupikin
We report here the ~670 Mb genome assembly of the Asian seabass (Lates calcarifer), a tropical marine teleost. We used long-read sequencing augmented by transcriptomics, optical and genetic mapping along with shared synteny from closely related fish species to derive a chromosome-level assembly with a contig N50 size over 1 Mb and scaffold N50 size over 25 Mb that span ~90% of the genome. The population structure of L. calcarifer species complex was analyzed by re-sequencing 61 individuals representing various regions across the species’ native range. SNP analyses identified high levels of genetic diversity and confirmed earlier indications of a population stratification comprising three clades with signs of admixture apparent in the South-East Asian population. The quality of the Asian seabass genome assembly far exceeds that of any other fish species, and will serve as a new standard for fish genomics.
Genome Biology | 2014
Xiaofang Jiang; Ashley Peery; A. Brantley Hall; Atashi Sharma; Xiao Guang Chen; Robert M. Waterhouse; Aleksey Komissarov; Michelle M. Riehle; Yogesh S. Shouche; Maria V. Sharakhova; Dan Lawson; Nazzy Pakpour; Peter Arensburger; Victoria L M Davidson; Karin Eiglmeier; Scott J. Emrich; Phillip George; Ryan C. Kennedy; Shrinivasrao P. Mane; Gareth Maslen; Chioma Oringanje; Yumin Qi; Robert E. Settlage; Marta Tojo; Jose M. C. Tubio; Maria F. Unger; Bo Wang; Kenneth D. Vernick; José M. C. Ribeiro; Anthony A. James
BackgroundAnopheles stephensi is the key vector of malaria throughout the Indian subcontinent and Middle East and an emerging model for molecular and genetic studies of mosquito-parasite interactions. The type form of the species is responsible for the majority of urban malaria transmission across its range.ResultsHere, we report the genome sequence and annotation of the Indian strain of the type form of An. stephensi. The 221 Mb genome assembly represents more than 92% of the entire genome and was produced using a combination of 454, Illumina, and PacBio sequencing. Physical mapping assigned 62% of the genome onto chromosomes, enabling chromosome-based analysis. Comparisons between An. stephensi and An. gambiae reveal that the rate of gene order reshuffling on the X chromosome was three times higher than that on the autosomes. An. stephensi has more heterochromatin in pericentric regions but less repetitive DNA in chromosome arms than An. gambiae. We also identify a number of Y-chromosome contigs and BACs. Interspersed repeats constitute 7.1% of the assembled genome while LTR retrotransposons alone comprise more than 49% of the Y contigs. RNA-seq analyses provide new insights into mosquito innate immunity, development, and sexual dimorphism.ConclusionsThe genome analysis described in this manuscript provides a resource and platform for fundamental and translational research into a major urban malaria vector. Chromosome-based investigations provide unique perspectives on Anopheles chromosome evolution. RNA-seq analysis and studies of immunity genes offer new insights into mosquito biology and mosquito-parasite interactions.
Genome Biology | 2015
Pavel Dobrynin; Shiping Liu; Gaik Tamazian; Zijun Xiong; Andrey A. Yurchenko; Ksenia Krasheninnikova; Sergey Kliver; Anne Schmidt-Küntzel; Klaus-Peter Koepfli; Warren E. Johnson; Lukas F. K. Kuderna; Raquel García-Pérez; Marc de Manuel; Ricardo M. Godinez; Aleksey Komissarov; Alexey I. Makunin; Vladimir Brukhin; Weilin Qiu; Long Zhou; Fang Li; Jian Yi; Carlos A. Driscoll; Agostinho Antunes; Taras K. Oleksyk; Eduardo Eizirik; Polina L. Perelman; Melody E. Roelke; David E. Wildt; Mark Diekhans; Tomas Marques-Bonet
BackgroundPatterns of genetic and genomic variance are informative in inferring population history for human, model species and endangered populations.ResultsHere the genome sequence of wild-born African cheetahs reveals extreme genomic depletion in SNV incidence, SNV density, SNVs of coding genes, MHC class I and II genes, and mitochondrial DNA SNVs. Cheetah genomes are on average 95 % homozygous compared to the genomes of the outbred domestic cat (24.08 % homozygous), Virunga Mountain Gorilla (78.12 %), inbred Abyssinian cat (62.63 %), Tasmanian devil, domestic dog and other mammalian species. Demographic estimators impute two ancestral population bottlenecks: one >100,000 years ago coincident with cheetah migrations out of the Americas and into Eurasia and Africa, and a second 11,084–12,589 years ago in Africa coincident with late Pleistocene large mammal extinctions. MHC class I gene loss and dramatic reduction in functional diversity of MHC genes would explain why cheetahs ablate skin graft rejection among unrelated individuals. Significant excess of non-synonymous mutations in AKAP4 (p<0.02), a gene mediating spermatozoon development, indicates cheetah fixation of five function-damaging amino acid variants distinct from AKAP4 homologues of other Felidae or mammals; AKAP4 dysfunction may cause the cheetah’s extremely high (>80 %) pleiomorphic sperm.ConclusionsThe study provides an unprecedented genomic perspective for the rare cheetah, with potential relevance to the species’ natural history, physiological adaptations and unique reproductive disposition.
Scientific Reports | 2016
Chao Bian; Yinchang Hu; Vydianathan Ravi; Inna S. Kuznetsova; Xueyan Shen; Xidong Mu; Ying Sun; Xinxin You; Jia Li; Xiaofeng Li; Ying Qiu; Boon-Hui Tay; Natascha May Thevasagayam; Aleksey Komissarov; Vladimir A. Trifonov; Marsel R. Kabilov; Alexey E. Tupikin; Jianren Luo; Hongmei Song; Chao Liu; Xuejie Wang; Dangen Gu; Yexin Yang; Wujiao Li; Gianluca Polgar; Guangyi Fan; Peng Zeng; He Zhang; Zijun Xiong; Zhujing Tang
The Asian arowana (Scleropages formosus), one of the world’s most expensive cultivated ornamental fishes, is an endangered species. It represents an ancient lineage of teleosts: the Osteoglossomorpha. Here, we provide a high-quality chromosome-level reference genome of a female golden-variety arowana using a combination of deep shotgun sequencing and high-resolution linkage mapping. In addition, we have also generated two draft genome assemblies for the red and green varieties. Phylogenomic analysis supports a sister group relationship between Osteoglossomorpha (bonytongues) and Elopomorpha (eels and relatives), with the two clades together forming a sister group of Clupeocephala which includes all the remaining teleosts. The arowana genome retains the full complement of eight Hox clusters unlike the African butterfly fish (Pantodon buchholzi), another bonytongue fish, which possess only five Hox clusters. Differential gene expression among three varieties provides insights into the genetic basis of colour variation. A potential heterogametic sex chromosome is identified in the female arowana karyotype, suggesting that the sex is determined by a ZW/ZZ sex chromosomal system. The high-quality reference genome of the golden arowana and the draft assemblies of the red and green varieties are valuable resources for understanding the biology, adaptation and behaviour of Asian arowanas.
GigaScience | 2014
Gaik Tamazian; Serguei Simonov; Pavel Dobrynin; Alexey I. Makunin; Anton Logachev; Aleksey Komissarov; Andrey Shevchenko; Vladimir Brukhin; Nikolay Cherkasov; Anton Svitin; Klaus-Peter Koepfli; Joan Pontius; Carlos A. Driscoll; Kevin Blackistone; Cristina Barr; David Goldman; Agostinho Antunes; Javier Quilez; Belen Lorente-Galdos; Can Alkan; Tomas Marques-Bonet; Marylin Menotti-Raymond; Victor A. David; Kristina Narfström; Stephen J. O’Brien
BackgroundDomestic cats enjoy an extensive veterinary medical surveillance which has described nearly 250 genetic diseases analogous to human disorders. Feline infectious agents offer powerful natural models of deadly human diseases, which include feline immunodeficiency virus, feline sarcoma virus and feline leukemia virus. A rich veterinary literature of feline disease pathogenesis and the demonstration of a highly conserved ancestral mammal genome organization make the cat genome annotation a highly informative resource that facilitates multifaceted research endeavors.FindingsHere we report a preliminary annotation of the whole genome sequence of Cinnamon, a domestic cat living in Columbia (MO, USA), bisulfite sequencing of Boris, a male cat from St. Petersburg (Russia), and light 30× sequencing of Sylvester, a European wildcat progenitor of cat domestication. The annotation includes 21,865 protein-coding genes identified by a comparative approach, 217 loci of endogenous retrovirus-like elements, repetitive elements which comprise about 55.7% of the whole genome, 99,494 new SNVs, 8,355 new indels, 743,326 evolutionary constrained elements, and 3,182 microRNA homologues. The methylation sites study shows that 10.5% of cat genome cytosines are methylated. An assisted assembly of a European wildcat, Felis silvestris silvestris, was performed; variants between F. silvestris and F. catus genomes were derived and compared to F. catus.ConclusionsThe presented genome annotation extends beyond earlier ones by closing gaps of sequence that were unavoidable with previous low-coverage shotgun genome sequencing. The assembly and its annotation offer an important resource for connecting the rich veterinary and natural history of cats to genome discovery.
Frontiers in Genetics | 2014
Inna S. Kuznetsova; Natascha M. Thevasagayam; Prakki S. R. Sridatta; Aleksey Komissarov; Jolly M. Saju; Si Y. Ngoh; Junhui Jiang; Xueyan Shen; László Orbán
As part of our Asian seabass genome project, we are generating an inventory of repeat elements in the genome and transcriptome. The karyotype showed a diploid number of 2n = 24 chromosomes with a variable number of B-chromosomes. The transcriptome and genome of Asian seabass were searched for repetitive elements with experimental and bioinformatics tools. Six different types of repeats constituting 8–14% of the genome were characterized. Repetitive elements were clustered in the pericentromeric heterochromatin of all chromosomes, but some of them were preferentially accumulated in pretelomeric and pericentromeric regions of several chromosomes pairs and have chromosomes specific arrangement. From the dispersed class of fish-specific non-LTR retrotransposon elements Rex1 and MAUI-like repeats were analyzed. They were wide-spread both in the genome and transcriptome, accumulated on the pericentromeric and peritelomeric areas of all chromosomes. Every analyzed repeat was represented in the Asian seabass transcriptome, some showed differential expression between the gonads. The other group of repeats analyzed belongs to the rRNA multigene family. FISH signal for 5S rDNA was located on a single pair of chromosomes, whereas that for 18S rDNA was found on two pairs. A BAC-derived contig containing rDNA was sequenced and assembled into a scaffold containing incomplete fragments of 18S rDNA. Their assembly and chromosomal position revealed that this part of Asian seabass genome is extremely rich in repeats containing evolutionarily conserved and novel sequences. In summary, transcriptome assemblies and cDNA data are suitable for the identification of repetitive DNA from unknown genomes and for comparative investigation of conserved elements between teleosts and other vertebrates.
bioRxiv | 2015
Ekaterina Starostina; Gaik Tamazian; Pavel Dobrynin; Stephen J. O'Brien; Aleksey Komissarov
Motivation Kmer-based analysis is a powerful method used in read error correction and implemented in various genome assembly tools. A number of read processing routines include extracting or removing sequence reads from the results of high-throughput sequencing experiments prior to further analysis. Here we present a new approach to sorting or filtering of raw reads based on a provided list of kmers. Results We developed Cookiecutter — a computational tool for rapid read extraction or removing according to a provided list of k-mers generated from a FASTA file. Cookiecutter is based on the implementation of the Aho-Corasik algorithm and is useful in routine processing of high-throughput sequencing datasets. Cookiecutter can be used for both removing undesirable reads and read extraction from a user-defined region of interest. Availability The open-source implementation with user instructions can be obtained from GitHub: https://github.com/ad3002/Cookiecutter.
Science Advances | 2017
Henrique V. Figueiró; Gang Li; Fernanda J. Trindade; Juliana G. Assis; Fabiano Sviatopolk-Mirsky Pais; Gabriel da Rocha Fernandes; Sarah Helen Dias dos Santos; Graham M. Hughes; Aleksey Komissarov; Agostinho Antunes; Cristine Silveira Trinca; Maíra R. Rodrigues; Tyler Linderoth; Ke Bi; Leandro Silveira; Fernando C. C. Azevedo; Daniel Luis Zanella Kantek; Emiliano Esterci Ramalho; Ricardo Augusto Brassaloti; Priscilla Marqui Schmidt Villela; Adauto Luis Veloso Nunes; Rodrigo Hidalgo Friciello Teixeira; Ronaldo Gonçalves Morato; Damian Loska; Patricia Saragüeta; Toni Gabaldón; Emma C. Teeling; Stephen J. O’Brien; Rasmus Nielsen; L. L. Coutinho
Big cat genomes reveal a history of interspecies admixture and adaptive evolution of genes underlying development and sensory perception. The great cats of the genus Panthera comprise a recent radiation whose evolutionary history is poorly understood. Their rapid diversification poses challenges to resolving their phylogeny while offering opportunities to investigate the historical dynamics of adaptive divergence. We report the sequence, de novo assembly, and annotation of the jaguar (Panthera onca) genome, a novel genome sequence for the leopard (Panthera pardus), and comparative analyses encompassing all living Panthera species. Demographic reconstructions indicated that all of these species have experienced variable episodes of population decline during the Pleistocene, ultimately leading to small effective sizes in present-day genomes. We observed pervasive genealogical discordance across Panthera genomes, caused by both incomplete lineage sorting and complex patterns of historical interspecific hybridization. We identified multiple signatures of species-specific positive selection, affecting genes involved in craniofacial and limb development, protein metabolism, hypoxia, reproduction, pigmentation, and sensory perception. There was remarkable concordance in pathways enriched in genomic segments implicated in interspecies introgression and in positive selection, suggesting that these processes were connected. We tested this hypothesis by developing exome capture probes targeting ~19,000 Panthera genes and applying them to 30 wild-caught jaguars. We found at least two genes (DOCK3 and COL4A5, both related to optic nerve development) bearing significant signatures of interspecies introgression and within-species positive selection. These findings indicate that post-speciation admixture has contributed genetic material that facilitated the adaptive evolution of big cat lineages.
Mitochondrial DNA | 2017
Adam L. Brandt; Kirill Grigorev; Yashira M Afanador-Hernández; Liz Paulino; William J. Murphy; Adrell Núñez; Aleksey Komissarov; Jessica R. Brandt; Pavel Dobrynin; J. David Hernández-Martich; Roberto María; Stephen J. O’Brien; Luis E. Rodríguez; Juan Carlos Martínez-Cruzado; Taras K. Oleksyk; Alfred L. Roca
Abstract Solenodons are insectivores found only in Hispaniola and Cuba, with a Mesozoic divergence date versus extant mainland mammals. Solenodons are the oldest lineage of living eutherian mammal for which a mitogenome sequence has not been reported. We determined complete mitogenome sequences for six Hispaniolan solenodons (Solenodon paradoxus) using next-generation sequencing. The solenodon mitogenomes were 16,454–16,457 bp long and carried the expected repertoire of genes. A mitogenomic phylogeny confirmed the basal position of solenodons relative to shrews and moles, with solenodon mitogenomes estimated to have diverged from those of other mammals ca. 78 Mya. Control region sequences of solenodons from the northern (n = 3) and southern (n = 5) Dominican Republic grouped separately in a network, with FST = 0.72 (p = 0.036) between north and south. This regional genetic divergence supports previous morphological and genetic reports recognizing northern (S. p. paradoxus) and southern (S. p. woodi) subspecies in need of separate conservation plans.
GigaScience | 2016
Gaik Tamazian; Pavel Dobrynin; Ksenia Krasheninnikova; Aleksey Komissarov; Klaus-Peter Koepfli; Stephen J. O’Brien
BackgroundAs the number of sequenced genomes rapidly increases, chromosome assembly is becoming an even more crucial step of any genome study. Since de novo chromosome assemblies are confounded by repeat-mediated artifacts, reference-assisted assemblies that use comparative inference have become widely used, prompting the development of several reference-assisted assembly programs for prokaryotic and eukaryotic genomes.FindingsWe developed Chromosomer – a reference-based genome arrangement tool, which rapidly builds chromosomes from genome contigs or scaffolds using their alignments to a reference genome of a closely related species. Chromosomer does not require mate-pair libraries and it offers a number of auxiliary tools that implement common operations accompanying the genome assembly process.ConclusionsDespite implementing a straightforward alignment-based approach, Chromosomer is a useful tool for genomic analysis of species without chromosome maps. Putative chromosome assemblies by Chromosomer can be used in comparative genomic analysis, genomic variation assessment, potential linkage group inference and other kinds of analysis involving contig or scaffold mapping to a high-quality assembly.