Aleksey Sadekov
University of Cambridge
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Aleksey Sadekov.
Paleoceanography | 2008
Aleksey Sadekov; Stephen M. Eggins; Patrick De Deckker; Dick Kroon
intertest Mg/Ca variability within these deep-sea core top samples is a source of significant uncertainty in Mg/Ca seawater temperature estimates and is notable for being site specific. Our results indicate that widely assumed uncertainties in Mg/Ca thermometry may be underestimated. We show that statistical power analysis can be used to evaluate the number of tests needed to achieve a target level of uncertainty on a sample by sample case. A varying bias also arises from the presence and varying mix of two morphotypes (G. ruber ruber and G. ruber pyramidalis), which have different mean Mg/Ca values. Estimated calcification temperature differences between these morphotypes range up to 5C and are notable for correlating with the seasonal range in seawater temperature at different sites.
Paleoceanography | 2009
Aleksey Sadekov; Stephen M. Eggins; Patrick De Deckker; Ulysses S. Ninnemann; Wolfgang Kuhnt; Franck Bassinot
Laser-ablation inductively coupled plasma-mass spectrometry microanalyses of Mg/Ca across individual final chambers of three planktonic foraminifera species, Globigerinoides ruber, G. sacculifer, and Pulleniatina obliquiloculata, reveal significant interspecies differences in test Mg concentrations. Whereas these three species have similar Mg/Ca values at low sea surface temperatures (similar to 22 degrees C), they diverge markedly at high sea surface temperatures (similar to 29 degrees C). Explanations for these differences in species Mg/Ca values based on detailed comparison of species intratest Mg/Ca distributions suggest that compositional variability within tests cannot account for the observed deviation of species Mg/Ca values in warm-water equatorial regions. Multiple regression modeling and delta O-18 analysis of Globigerinoides sacculifer tests indicate that interspecies differences in Mg/Ca values result from different depth habitats. The average Mg/Ca values of G. ruber final chambers reflect the temperature of the surface mixed layer (0-25 m), whereas those of G. sacculifer and Pulleniatina obliquiloculata correlate best with subsurface temperatures at 50-75 m and 100-125 m water depths, respectively. Mg/Ca calibration to the temperatures at these depths reveals a similar temperature control on Mg test composition in all species. Combining our results with Mg/Ca values from published culturing experiments, we derive a generalized equation for the effect of temperature and seawater salinity on foraminiferal Mg/Ca. We also show that the Mg/Ca composition of specific calcite layers within foraminiferal tests, including the low-Mg/Ca layers of Globigerinoides ruber and G. sacculifer and the cortex layer of Pulleniatina obliquiloculata, correlates with seawater temperature and can be used as an additional proxy for seawater temperature.
Geochemistry Geophysics Geosystems | 2008
L. D. Pena; Isabel Cacho; Eva María Calvo; Carles Pelejero; Stephen M. Eggins; Aleksey Sadekov
The advent of new microanalytical techniques such as electron microprobe mapping (EMP) and laser ablation microsamplers coupled to mass spectrometers (LA-ICP-MS) provides a new array of possibilities to explore in great detail the trace elements distribution in foraminiferal carbonates. Here we apply these techniques to characterize diagenetic phases present in foraminiferal shells from Ocean Drilling Program Site 1240 in the Panama Basin, a region characterized by the presence of manganese-rich minerals in the sediments. The combined application of these techniques allows us to characterize the elemental and spatial distribution on the surface and across the foraminiferal shells. Results illustrate the presence of at least two different Mn-rich contaminant phases in the foraminiferal carbonates: Mn-rich carbonates and ferromanganese oxides. Elemental maps also highlight the relevance of the foraminifera shell texture and porosity in the distribution and formation of these contaminant phases. In the case of Neogloboquadrina dutertrei, Mn phases form a continuous thin layer in the inner part of the chambers, whereas for Globigerinoides ruber, Mn phases have a rather patchy distribution and are usually found within the pores. Significant high magnesium concentrations are always associated with these Mn-rich phases. These new findings support the need of removing these Mn-rich contaminant phases in order to measure accurately the Mg/Ca ratios in the foraminifera shell and therefore obtain reliable Mg/Ca paleotemperature reconstructions.
Nature Communications | 2013
Aleksey Sadekov; Raja S. Ganeshram; Laetitia Pichevin; Rose Berdin; Erin L. McClymont; Henry Elderfield; Alexander W. Tudhope
The El Niño-Southern Oscillation (ENSO) is one of the most important components of the global climate system, but its potential response to an anthropogenic increase in atmospheric CO2 remains largely unknown. One of the major limitations in ENSO prediction is our poor understanding of the relationship between ENSO variability and long-term changes in Tropical Pacific oceanography. Here we investigate this relationship using palaeorecords derived from the geochemistry of planktonic foraminifera. Our results indicate a strong negative correlation between ENSO variability and zonal gradient of sea-surface temperatures across the Tropical Pacific during the last 22 ky. This strong correlation implies a mechanistic link that tightly couples zonal sea-surface temperature gradient and ENSO variability during large climate changes and provides a unique insight into potential ENSO evolution in the future by suggesting enhanced ENSO variability under a global warming scenario.
Geophysical Research Letters | 2010
T. Russon; M. Elliot; Aleksey Sadekov; Guy Cabioch; Thierry Corrège; P. De Deckker
The position of the southern boundary of the Pacific warm pool is shown to have been stable since the early Pleistocene, based upon a planktic foraminiferal Mg/Ca-derived reconstruction of subtropical sea surface temperature in the Coral Sea. This contrasts with previous reconstructions showing warm pool contraction from the north and east and means that the early Pleistocene warm pool was more hemispherically asymmetric than its present configuration. The latter was not established until ∼1Ma, supporting a strengthening of the northern Hadley Cell, which was not replicated in its southern counterpart, prior to the Mid-Pleistocene Transition. Copyright
Paleoceanography | 2016
Aleksey Sadekov; Kate F. Darling; Toyoho Ishimura; Christopher M. Wade; Katsunori Kimoto; Arun Deo Singh; Pallavi Anand; Dick Kroon; Simon Jung; Gerald Ganssen; Raja S. Ganeshram; Urumu Tsunogai; Henry Elderfield
Planktonic foraminifera record oceanic conditions in their shell geochemistry. Many palaeoenvironmental studies have used fossil planktonic foraminifera to constrain past seawater properties by defining species based on their shell morphology. Recent genetic studies, however, have identified ecologically distinct genotypes within traditionally recognized morphospecies, signaling potential repercussions for palaeoclimate reconstructions. Here we demonstrate how the presence of Globigerina bulloides cryptic genotypes in the Arabian Sea may influence geochemical signals of living and fossil assemblages of these morphospecies. We have identified two distinct genotypes of G. bulloides with either cool water (type-II) or warm water (type-I) temperature preferences in the Western Arabian Sea. We accompany these genetic studies with analyses of Mg/Ca and stable oxygen isotope (δ18O) compositions of individual G. bulloides shells. Both Mg/Ca and δ18O values display bimodal distribution patterns. The distribution of Mg/Ca values cannot be simply explained by seawater parameters, and we attribute it to genotype-specific biological controls on the shell geochemistry. The wide range of δ18O values in the fossil assemblage also suggests that similar controls likely influence this proxy in addition to environmental parameters. However, the magnitude of this effect on the δ18O signals is not clear from our data set, and further work is needed to clarify this. We also discuss current evidence of potential genotype-specific geochemical signals in published data on G. bulloides geochemistry and other planktonic foraminiferal species. We conclude that significant caution should be taken when utilizing G. bulloides geochemistry for paleoclimate reconstruction in the regions with upwelling activity or oceanographic fronts.
Geophysical Research Letters | 2017
Pascal Flohr; Dominik Fleitmann; Eduardo Zorita; Aleksey Sadekov; Hai Cheng; Matt Bosomworth; Lawrence R. Edwards; Wendy Matthews; Roger Matthews
Droughts have had large impacts on past and present societies. High-resolution paleoclimate data are essential to place recent droughts in a meaningful historical context and to predict regional future changes with greater accuracy. Such records, however, are very scarce in the Middle East in general, and the Fertile Crescent in particular. Here we present a 2400 year long speleothem-based multiproxy record from Gejkar Cave in northern Iraq. Oxygen and carbon isotopes and magnesium are faithful recorders of effective moisture. The new Gejkar record not only shows that droughts in 1998–2000 and 2007–2010, which have been argued to be a contributing factor to Syrian civil war, were extreme compared to the current mean climate, but they were also superimposed on a long-term aridification trend that already started around or before 950 C.E. (Common Era). This long-term trend is not captured by tree ring records and climate models, emphasizing the importance of using various paleoclimate proxy data to evaluate and improve climate models and to correctly inform policy makers about future hydroclimatic changes in this drought-prone region.
Paleoceanography | 2014
Aleksey Sadekov; Flora Bush; Joanna Kerr; Raja S. Ganeshram; Henry Elderfield
The Mg/Ca compositions of benthic foraminifera from the superfamily Miliolacea have been studied to explore the use of these high-Mg foraminifera as a proxy for deep ocean conditions. Taxonomic analyses, relative abundance, and depth distributions of different Miliolacea species were carried out on a collection of core top samples, covering a depth range of 131 m to 2530 m, along the Australian coast of the Timor Sea. Pyrgo sp., composed of Pyrgo sarsi and Pyrgo murrhina, was found to be the most suitable for proxy studies. Mg/Ca values of this group of foraminifera show a strong correlation with bottom water temperatures and carbonate ion saturation described by the linear relationship: Mg/Ca = 2.53(±0.22) × BWT + 0.129(±0.023) × Δ[CO32−] + 4.63(±0.53), within the −1°C to 8°C temperature range. Absolute Mg/Ca values of Pyrgo sp. calcite and their temperature sensitivity are similar to those observed for inorganic calcite, suggesting that Mg composition of Pyrgo sp. calcite is mainly controlled by inorganic processes. The Mg/Ca composition of Pyrgo sp. calcite provides a new tool for reconstructing both water temperature and carbonate ion saturation when combined with other proxies for one of these parameters. A down core record from the Eastern Equatorial Pacific has been generated to illustrate how Mg/Ca values can be used for paleoclimate studies. This down core record shows large changes in Pacific bottom waters [CO32−] across glacial-interglacial transition, implying an increase in [CO32−] during the glacial period.
Geochemistry Geophysics Geosystems | 2015
Gerald Langer; Aleksey Sadekov; Silke Thoms; Antje Mewes; Gernot Nehrke; Mervyn Greaves; Sambuddha Misra; Jelle Bijma; Henry Elderfield
The shallow water benthic foraminifer Amphistegina lessonii was grown in seawater of variable Li and Ca concentration and shell Li/Ca was determined by means of LA-ICPMS. Shell Li/Ca is positively correlated to seawater Li/Ca only when the Li concentration of seawater is changed. If the seawater Ca concentration is changed, shell Li/Ca remains constant. This indicates that Li does not compete with Ca for incorporation in the shell of A. lessonii. A recently proposed calcification model can be applied to divalent cations (e.g., Mg and Sr), which compete for binding sites of ion transporters and positions in the calcite lattice. By contrast, the transport pathway of monovalent cations such as Li is probably diffusion based (e.g., ion-channels), and monovalent cations do not compete with Ca for a position in the calcite lattice. Here we present a new model for Li partitioning into foraminiferal calcite which predicts our experimental results and should also be applicable to other alkali metals.
Rapid Communications in Mass Spectrometry | 2018
Nicholas S. Lloyd; Aleksey Sadekov; Sambuddha Misra
RATIONALE Boron isotope ratios (δ11 B values) are used as a proxy for seawater paleo-pH, amongst several other applications. The analytical precision can be limited by the detection of low intensity ion beams from limited sample amounts. High-gain amplifiers offer improvements in signal/noise ratio and can be used to increase measurement precision and reduce sample amounts. METHODS 1013 ohm amplifier technology has previously been applied to several radiogenic systems, but has thus far not been applied to non-traditional stable isotopes. Here we apply 1013 ohm amplifier technology for the measurement of boron isotope ratios using solution mode MC-ICP-MS and laser ablation mode (LA-)MC-ICP-MS techniques. Precision is shown for reference materials as well as for low-volume foraminifera samples. RESULTS The baseline uncertainty for a 0.1 pA 10 B+ ion beam is reduced to <0.1 ‰ for a typical measurement period. The external precision is better than 0.2 ‰ (2SD) for δ11 B measurements for solution samples containing as little as 0.8 ng total boron. For in situ microanalyses with LA-MC-ICP-MS, the external precision of 11 B/10 B from an in-house calcite standard was 1 ‰ (2SD) for individual spot analyses, and 0.3 ‰ for the mean of ≥10 replicate spot analyses. CONCLUSIONS 1013 ohm amplifier technology is demonstrated to offer advantages for the determination of δ11 B values by both MC-ICP-MS and LA-MC-ICP-MS for small samples of biogenic carbonates, such as foraminifera shells. 1013 ohm amplifier technology will also be of benefit to other non-traditional stable isotope measurements.