Aleksey V. Yakovlev
Kazan Federal University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Aleksey V. Yakovlev.
Biochemical and Biophysical Research Communications | 2015
Alsu N. Mustafina; Aleksey V. Yakovlev; Aisylu Sh. Gaifullina; Thomas M. Weiger; Anton Hermann; G. F. Sitdikova
The aim of the present study was to evaluate the effects of hydrogen sulfide (H2S) on the membrane potential, action potential discharge and exocytosis of secretory granules in neurosecretory pituitary tumor cells (GH3). The H2S donor - sodium hydrosulfide (NaHS) induced membrane hyperpolarization, followed by truncation of spontaneous electrical activity and decrease of the membrane resistance. The NaHS effect was dose-dependent with an EC50 of 152 μM (equals effective H2S of 16-19 μM). NaHS effects were not altered after inhibition of maxi conductance calcium-activated potassium (BK) channels by tetraethylammonium or paxilline, but were significantly reduced after inhibition or activation of ATP-dependent potassium channels (KATP) by glibenclamide or by diazoxide, respectively. In whole-cell recordings NaHS increased the amplitude of KATP currents, induced by hyperpolarizing pulses and subsequent application of glibenclamide decreased currents to control levels. Using the fluorescent dye FM 1-43 exocytosis of secretory granules was analyzed in basal and stimulated conditions (high K(+) external solution). Prior application of NaHS decreased the fluorescence of the cell membrane in both conditions which links with activation of KATP currents (basal secretion) and activation of KATP currents and BK-currents (stimulated exocytosis). We suggest that H2S induces hyperpolarization of GH3 cells by activation of KATP channels which results in a truncation of spontaneous action potentials and a decrease of hormone release.
Biochemistry (moscow) Supplement Series A: Membrane and Cell Biology | 2013
O. B. Mitrukhina; Aleksey V. Yakovlev; G. F. Sitdikova
The effects of sodium hydrosulfide (NaHS), the donor of hydrogen sulfide (H2S), on the exo/endocytosis cycle of synaptic vesicles in the motor nerve ending of the mouse diaphragm were studied using intracellular microelectrode technique and fluorescent microscopy. NaHS increased the frequency of miniature end-plate potentials (MEPPs), without changing their amplitude-time parameters. NaHS also increased the amplitude of the evoked postsynaptic responses during single stimulation (0.3 Hz), which was the evidence of the enhanced synaptic vesicle exocytosis. During high-frequency stimulation (50 Hz), NaHS induced more significant decline of neurotransmitter release, probably due to the lower rate of synaptic vesicle mobilization from recycling pool to exocytic sites. NaHS also decreased the uptake of the fluorescent endocytic dye FM 1–43, which indicated the reduced endocytosis of synaptic vesicles. Thus, the H2S donor increases exocytosis and decreases the processes of synaptic vesicle endocytosis and mobilization in the mouse motor nerve ending.
Neuroscience | 2017
Aleksey V. Yakovlev; Evgeniya D. Kurmasheva; Rashid Giniatullin; Ilgam Khalilov; G. F. Sitdikova
Hydrogen sulfide (H2S) is an endogenous gasotransmitter with neuroprotective properties that participates in the regulation of transmitter release and neuronal excitability in various brain structures. The role of H2S in the growth and maturation of neural networks however remains unclear. The aim of the present study is to reveal the effects of H2S on neuronal spontaneous activity relevant to neuronal maturation in hippocampal slices of neonatal rats. Sodium hydrosulfide (NaHS) (100μM), a classical donor of H2S produced a biphasic effect with initial activation and subsequent concentration-dependent suppression of network-driven giant depolarizing potentials (GDPs) and neuronal spiking activity. Likewise, the substrate of H2S synthesis l-cysteine (1mM) induced an initial increase followed by an inhibition of GDPs and spiking activity. Our experiments indicate that the increase in initial discharge activity by NaHS is evoked by neuronal depolarization which is partially mediated by a reduction of outward K+ currents. The subsequent decrease in the neuronal activity by H2S appears to be due to the rightward shift of activation and inactivation of voltage-gated Na+ currents, thus preventing network activity. NaHS also reduced N-methyl-d-aspartate (NMDA)-mediated currents, without essential effect on AMPA/kainate or GABAA-mediated currents. Finally, H2S abolished the interictal-like events induced by bicuculline. In summary, our results suggest that through the inhibitory action on voltage-gated Na+ channels and NMDA receptors, H2S prevents the enhanced neuronal excitability typical to early hippocampal networks.
FEBS Letters | 2016
Aisylu Sh. Gaifullina; Aleksey V. Yakovlev; Alsu N. Mustafina; Thomas M. Weiger; Anton Hermann; G. F. Sitdikova
In this study, we investigated the effects of L‐homocysteine (Hcy) on maxi calcium‐activated potassium (BK) channels and on exocytosis of secretory granules in GH3 rat pituitary‐derived cells. A major finding of our study indicates that short‐term application of Hcy increased the open probability of oxidized BK channels in inside‐out recordings. Whole‐cell recordings show that extracellular Hcy also augmented BK currents during long‐term application. Furthermore, Hcy decreased the exocytosis of secretory granules. This decrease was partially prevented by the BK channel inhibitor paxilline and fully prevented by N‐acetylcysteine, a reactive oxygen species scavenger. Taken together, our data show that elevation of cellular Hcy level induces oxidative stress, increases BK channel activity, and decreases exocytosis of secretory granules. These findings may provide insight into some of the developmental impairments and neurotoxicity associated with Hyperhomocysteinemia (HHcy), a disease arising due to abnormally elevated levels of Hcy in the plasma.
Biochemistry (moscow) Supplement Series A: Membrane and Cell Biology | 2013
Aleksey V. Yakovlev; K. S. Koroleva; F. F. Valiullina; Roustem Khazipov
Resting membrane potential is a critical parameter determining tonic or bursting mode of the thalamic neurons. Previous studies using whole-cell recordings showed that immature ventroposteriomedial (VPM) and lateral geniculate thalamic neurons are strongly depolarized and have resting membrane potential near −50 mV. Yet, whole-cell recordings are associated with an introduction of the shunting conductance via the gigaseal that may lead to membrane depolarization in small neurons with high, in the gigaohm range, membrane resistance. Therefore, we have performed measurements of resting potential of VPM neurons in slices obtained from neonatal rats of postnatal days P2-P7 using cell-attached recordings of NMDA channels as voltage sensors. Because currents through the NMDA channels reverse near 0 mV, we assumed that the resting potential should equal the reversal potential of currents through NMDA channels in cell-attached recordings. Analysis of the current-voltage relationships of NMDA currents revealed that the resting potential in the immature VPM neurons is around −74 mV and that it does not change during the first postnatal week. This suggests that VPM neurons may operate in the bursting mode during the early postnatal period and support the oscillatory activity (spindle-like bursts) in the developing thalamocortical networks.
Frontiers in Cellular Neuroscience | 2017
Kseniya Koroleva; Alsu N. Mustafina; Aleksey V. Yakovlev; Anton Hermann; Rashid Giniatullin; G. F. Sitdikova
Hydrogen sulfide (H2S), a well-established member of the gasotransmitter family, is involved in a variety of physiological functions, including pro-nociceptive action in the sensory system. Although several reports have shown that H2S activates sensory neurons, the molecular targets of H2S action in trigeminal (TG) nociception, implicated in migraine, remains controversial. In this study, using suction electrode recordings, we investigate the effect of the H2S donor, sodium hydrosulfide (NaHS), on nociceptive firing in rat meningeal TG nerve fibers. The effect of NaHS was also explored with patch-clamp and calcium imaging techniques on isolated TG neurons. NaHS dramatically increased the nociceptive firing in TG nerve fibers. This effect was abolished by the TRPV1 inhibitor capsazepine but was partially prevented by the TRPA1 blocker HC 030031. In a fraction of isolated TG neurons, NaHS transiently increased amplitude of capsaicin-induced currents. Moreover, NaHS by itself induced inward currents in sensory neurons, which were abolished by the TRPV1 inhibitor capsazepine suggesting involvement of TRPV1 receptors. In contrast, the inhibitor of TRPA1 receptors HC 030031 did not prevent the NaHS-induced currents. Imaging of a large population of TG neurons revealed that NaHS induced calcium transients in 41% of tested neurons. Interestingly, this effect of NaHS in some neurons was inhibited by the TRPV1 antagonist capsazepine whereas in others it was sensitive to the TRPA1 blocker HC 030031. Our data suggest that both TRPV1 and TRPA1 receptors play a role in the pro-nociceptive action of NaHS in peripheral TG nerve endings in meninges and in somas of TG neurons. We propose that activation of TRPV1 and TRPA1 receptors by H2S during neuro-inflammation conditions contributes to the nociceptive firing in primary afferents underlying migraine pain.
Frontiers in Cellular Neuroscience | 2017
Aleksey V. Yakovlev; Evgeniya D. Kurmasheva; Yevheniia Ishchenko; Rashid Giniatullin; G. F. Sitdikova
Hydrogen sulfide (H2S) is an endogenously produced neuroactive gas implicated in many key processes in the peripheral and central nervous system. Whereas the neuroprotective role of H2S has been shown in adult brain, the action of this messenger in newborns remains unclear. One of the known targets of H2S in the nervous system is the N-methyl-D-aspartate (NMDA) glutamate receptor which can be composed of different subunits with distinct functional properties. In the present study, using patch clamp technique, we compared the effects of the H2S donor sodium hydrosulfide (NaHS, 100 μM) on hippocampal NMDA receptor mediated currents in rats of the first and third postnatal weeks. This was supplemented by testing effects of NaHS on recombinant GluN1/2A and GluN1/2B NMDA receptors expressed in HEK293T cells. The main finding is that NaHS action on NMDA currents is age-dependent. Currents were reduced in newborns but increased in older juvenile rats. Consistent with an age-dependent switch in NMDA receptor composition, in HEK239T cells expressing GluN1/2A receptors, NaHS increased NMDA activated currents associated with acceleration of desensitization and decrease of the deactivation rate. In contrast, in GluN1/2B NMDA receptors, which are prevalent in newborns, NaHS decreased currents and reduced receptor deactivation without effect on the desensitization rate. Adenylate cyclase inhibitor MDL-12330A (10 μM) did not prevent the age-dependent effects of NaHS on NMDA evoked currents in pyramidal neurons of hippocampus. The reducing agent dithiothreitol (DTT, 2 mM) applied on HEK293T cells prevented facilitation induced by NaHS on GluN1/2A NMDA receptors, however in GluN1/2B NMDA receptors the inhibitory effect of NaHS was still observed. Our data indicate age-dependent effect of H2S on NMDA receptor mediated currents determined by glutamate receptor subunit composition. While the inhibitory action of H2 on GluN1/2B receptors could limit the excessive activation in early age, the enhanced functionality of GluN1/2A receptor in the presence of this gasotransmitter can enlarge synaptic efficacy and promote synaptic plasticity in adults.
Neuroscience | 2015
Elena Gerasimova; Julia Lebedeva; Aleksey V. Yakovlev; A. L. Zefirov; Rashid Giniatullin; G. F. Sitdikova
Journal of Bionanoscience | 2018
Aleksey V. Yakovlev; Evgeniya Kurmashova; Andrey Zakharov; G. F. Sitdikova
Nitric Oxide | 2014
G. F. Sitdikova; Elena Gerasimova; Aleksey V. Yakovlev