Aleksey Y. Malyshev
Russian Academy of Sciences
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Aleksey Y. Malyshev.
Physical Review Letters | 2010
Tatjana Tchumatchenko; Aleksey Y. Malyshev; Theo Geisel; Maxim Volgushev; Fred Wolf
We study how threshold models and neocortical neurons transfer temporal and interneuronal input correlations to correlations of spikes. In both, we find that the low common input regime is governed by firing rate dependent spike correlations which are sensitive to the detailed structure of input correlation functions. In the high common input regime, the spike correlations are largely insensitive to the firing rate and exhibit a universal peak shape. We further show that pairs with different firing rates driven by common inputs in general exhibit asymmetric spike correlations.
The Journal of Neuroscience | 2011
Tatjana Tchumatchenko; Aleksey Y. Malyshev; Fred Wolf; Maxim Volgushev
The processing speed of the brain depends on the ability of neurons to rapidly relay input changes. Previous theoretical and experimental studies of the timescale of population firing rate responses arrived at controversial conclusions, some advocating an ultrafast response scale but others arguing for an inherent disadvantage of mean encoded signals for rapid detection of the stimulus onset. Here we assessed the timescale of population firing rate responses of neocortical neurons in experiments performed in the time domain and the frequency domain in vitro and in vivo. We show that populations of neocortical neurons can alter their firing rate within 1 ms in response to somatically delivered weak current signals presented on a fluctuating background. Signals with amplitudes of miniature postsynaptic currents can be robustly and rapidly detected in the population firing. We further show that population firing rate of neurons of rat visual cortex in vitro and cat visual cortex in vivo can reliably encode weak signals varying at frequencies up to ∼200–300 Hz, or ∼50 times faster than the firing rate of individual neurons. These results provide coherent evidence for the ultrafast, millisecond timescale of cortical population responses. Notably, fast responses to weak stimuli are limited to the mean encoding. Rapid detection of current variance changes requires extraordinarily large signal amplitudes. Our study presents conclusive evidence showing that cortical neurons are capable of rapidly relaying subtle mean current signals. This provides a vital mechanism for the propagation of rate-coded information within and across brain areas.
The Journal of Neuroscience | 2013
Vladimir Ilin; Aleksey Y. Malyshev; Fred Wolf; Maxim Volgushev
The abilities of neuronal populations to encode rapidly varying stimuli and respond quickly to abrupt input changes are crucial for basic neuronal computations, such as coincidence detection, grouping by synchrony, and spike-timing-dependent plasticity, as well as for the processing speed of neuronal networks. Theoretical analyses have linked these abilities to the fast-onset dynamics of action potentials (APs). Using a combination of whole-cell recordings from rat neocortical neurons and computer simulations, we provide the first experimental evidence for this conjecture and prove its validity for the case of distal AP initiation in the axon initial segment (AIS), typical for cortical neurons. Neocortical neurons with fast-onset APs in the soma can phase-lock their population firing to signal frequencies up to ∼300–400 Hz and respond within 1–2 ms to subtle changes of input current. The ability to encode high frequencies and response speed were dramatically reduced when AP onset was slowed by experimental manipulations or was intrinsically slow due to immature AP generation mechanisms. Multicompartment conductance-based models reproducing the initiation of spikes in the AIS could encode high frequencies only if AP onset was fast at the initiation site (e.g., attributable to cooperative gating of a fraction of sodium channels) but not when fast onset of somatic AP was produced solely by backpropagation. We conclude that fast-onset dynamics is a genuine property of cortical AP generators. It enables fast computations in cortical circuits that are rich in recurrent connections both within each region and across the hierarchy of areas.
Journal of Biomedical Optics | 1999
Vladislav A. Kamensky; Felix Feldchtein; Valentin M. Gelikonov; Ludmila Snopova; Sergey V. Muraviov; Aleksey Y. Malyshev; Nikita Bityurin; Alexander M. Sergeev
We demonstrate that optical coherence tomography (OCT) is a convenient diagnostic tool to monitor pulse-to-pulse kinetics in laser interactions with biological tissue. In experiments on laser modification and ablation of the cataractous human lens and the porcine cornea we have applied this technique in situ to investigate different modes of preablation tissue swelling, crater formation and thermally affected zone development. The cataractous lens is an example of highly scattering media whereas the cornea is initially low scattering. The radiation with different wavelengths has been employed including that of a YAG:Er laser (λ=2.94u2009μm), a glass:Er laser (λ=1.54u2009μm), YAG:Nd lasers (λ=1.32u2009μm and λ=1.44u2009μm), as well as of the fifth harmonic of a Nd:YAP laser (λ=0.216u2009μm). Pulse-to-pulse OCT monitoring has been accompanied by the probe beam shielding diagnostics to provide the time-resolved observation of the interaction dynamics.
Neuroscience | 2001
P. M. Balaban; Dmitry A. Poteryaev; I. S. Zakharov; P Uvarov; Aleksey Y. Malyshev; Alexander V. Belyavsky
A novel gene named Helix command-specific 2 (HCS2) was shown to be expressed predominantly in four giant parietal interneurons involved in withdrawal behavior of the terrestrial snail Helix lucorum L. and several single neurons in other ganglia. Decrease in spontaneous electrophysiological activity of neurons in the isolated CNS by 24h incubation in saline with elevated Mg(2+) concentration significantly decreased the number of HCS2-expressing neurons. Five short-term serotonin applications (each of 10microM), during a 24h incubation of the nervous system in saline induced expression of the HCS2 gene in many cells in cerebral, parietal, pleural and pedal ganglia. Dopamine applications under similar conditions were not effective. Application of anisomycin or cycloheximide, known to block protein synthesis, did not prevent the induction of HCS2 expression under serotonin influence. Skin injury elicited a significant increase in the number of HCS2-expressing cells 24h later in pleural and cerebral ganglia. Incubation of the isolated nervous system preparations for three days in culture medium elicited close to a maximum increase in number of HCS2-expressing cells. Elevation of the normal Mg(2+) concentration in the culture medium significantly decreased the number of cells demonstrating HCS2 expression. Application of the cAMP activator forskolin (10microM) increased the expression under Mg(2+), indicating that cAMP was involved in the up-regulation of HCS2. Application of thapsigargin (10microM), known to release Ca(2+) from intracellular stores, was also effective in increasing expression, suggesting participation of Ca(2+) in regulation of HCS2 expression. Cellular groups expressing the HCS2 gene under different conditions seem to be functionally related since it was demonstrated earlier that some neurons constituting these clusters are involved in the withdrawal behavior and the response of the organism to stress stimuli. From these results we suggest that the HCS2 pattern of expression can be down-regulated by a decrease in synaptic activity in the nervous system, and up-regulated by external noxious inputs, as well as the application of neurotransmitters and second messengers known to be involved in the withdrawal behavior and maintenance of isolated ganglia in culture medium. When up-regulated, the HCS2 expression appears, at least in part in neurons, to be involved in the withdrawal behavior.
Applied Surface Science | 1997
Nikita Bityurin; Sergey V. Muraviov; Alexander P. Alexandrov; Aleksey Y. Malyshev
The modification of thin polymethylmethacrylate (PMMA) films by the fifth harmonic (λ=216 nm) of a Nd:YAP laser is studied. This modification manifests itself in essential changes of optical properties, film thickness (bulk etching) and solubility in appropriate developers (crosslinking). The modification kinetics is investigated for films of different thickness, for different laser fluences (below ablation threshold), in air, and in vacuum. The nonreciprocal response not connected with laser heating has been obtained.
Neuroscience Letters | 1999
Aleksey Y. Malyshev; P. M. Balaban
Intracellular tetanization of premotor interneurons for withdrawal in the snail. Helix lucorum produces long-term facilitation of synaptic inputs of these neurons. Using this model of plasticity we investigated the role of calcium in postsynaptic induction of synaptic facilitation. It was shown that, from the one hand, postsynaptic injection of calcium chelator EGTA completely abolishes potentiation and, from the other hand, injection of calcium chloride into the interneuron produces facilitation-like changes in the EPSP amplitude in this neuron. Therefore, not only necessity but also sufficiency of increasing of postsynaptic calcium for induction of synaptic potentiation was demonstrated. We also showed that inhibitor of nitric oxide synthase N-omega-nitro-L-arginine prevents development of postsynaptically induced facilitation what suggests that nitric oxide may participate in investigated synaptic facilitation as a retrograde messenger. These results support the idea that both invertebrates and vertebrates have common mechanisms underlying synaptic plasticity.
Journal of Comparative Physiology A-neuroethology Sensory Neural and Behavioral Physiology | 1999
Aleksey Y. Malyshev; T.P. Norekian; A. O. D. Willows
Abstract A group of four cardioexcitatory neurons has been identified in the intestinal ganglia of the mollusc Clione limacina. Relatively weak stimulation of the intestinal neurons induced auricle contractions only, while strong stimulation produced initial auricle contractions followed by full-cycle auricle-ventricle contractions. Intestinal cardioexcitatory neurons probably utilized as their transmitter a peptide similar to Tritonia pedal peptide – they showed pedal peptide-like immunoreactivity, and their effects were mimicked by application of the exogenous pedal peptide. The pedal cardioexcitatory neuron was found to produce strong excitatory effects only on the ventricle contractions. Its stimulation induced ventricle contractions in the quiescent heart or significantly accelerated the rate of ventricle contractions in the rhythmically active heart. The pedal cardioexcitatory neuron apparently utilized serotonin as a neurotransmitter, based upon serotonin immunoreactivity, blocking effect of serotonin antagonists mianserin and methysergide, and the observation that exogenous serotonin mimicked its effect. A dense network of pedal peptide-like immunoreactivity was found both in the auricle and ventricle tissue. Serotonin immunoreactivity was densely present in the ventricle, while the auricle contained only a separate serotonin-immunoreactive unbranched axon. Thus, there are two separate groups of central cardioexcitatory neurons with different effects on heart activity, which together might provide a complex cardio-regulatory function in Clione.
Neuroscience Letters | 2003
N. I. Bravarenko; T. A. Korshunova; Aleksey Y. Malyshev; P. M. Balaban
The properties of the monosynaptic input from mechanosensory neurons to withdrawal interneurons were examined in Helix lucorum. The instantaneous I-V relation of the excitatory postsynaptic current in withdrawal interneurons was nonlinear, having a plateau region between -40 and -60 mV. On application of the blocker of vertebrate N-methyl-D-aspartate (NMDA) receptors AP5, or reduction of the Mg(2+) concentration, the current-voltage relation became more linear, suggesting that Mg(2+) may partially block the ion channel underlying the EPSC at voltages ranging from -40 to around -60 mV and the involvement of NMDA-like receptors. DNQX and 6-cyano-7-nitroquinoxaline-2,3-dione, which are known to block the glutamate non-NMDA receptors in mammals, significantly depress in a dose-dependent manner the actions of the natural transmitter. Exogenous L-glutamate applications mimicked the action of the mechanosensory neuron transmitter.
PLOS ONE | 2008
Maxim Volgushev; Aleksey Y. Malyshev; P. M. Balaban; Marina Chistiakova; Stanislav Volgushev; Fred Wolf
The generation of action potentials (APs) is a key process in the operation of nerve cells and the communication between neurons. Action potentials in mammalian central neurons are characterized by an exceptionally fast onset dynamics, which differs from the typically slow and gradual onset dynamics seen in identified snail neurons. Here we describe a novel method of analysis which provides a quantitative measure of the onset dynamics of action potentials. This method captures the difference between the fast, step-like onset of APs in rat neocortical neurons and the gradual, exponential-like AP onset in identified snail neurons. The quantitative measure of the AP onset dynamics, provided by the method, allows us to perform quantitative analyses of factors influencing the dynamics.