Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alena Gros is active.

Publication


Featured researches published by Alena Gros.


Science | 2014

Cancer Immunotherapy Based on Mutation-Specific CD4+ T Cells in a Patient with Epithelial Cancer

Eric Tran; Alena Gros; Paul F. Robbins; Yong-Chen Lu; Mark E. Dudley; John R. Wunderlich; Robert Somerville; Katherine Hogan; Christian S. Hinrichs; Maria R. Parkhurst; James Chih-Hsin Yang; Steven A. Rosenberg

T Cells for Epithelial Tumors Malignant tumors harbor genetic alterations. Recently, adoptive T cell therapies have taken advantage of this: T cells specific for mutations in tumors are infused into patients to generate an antitumor immune response. Although therapeutic benefit has been seen for melanomas, effectiveness against more common epithelial tumors is unclear. Using whole-exome sequencing, Tran et al. (p. 641) identified tumor-infiltrating CD4+ T cells specific for a mutated antigen expressed by a tumor from a patient with metastatic cholangiocarcinoma. Infusion of this patient with an expanded-population, mutation-specific T cell resulted in tumor regression and stabilization of disease. T cells specific for a mutation expressed by tumor cells show antitumor activity in a patient with an epithelial cancer. Limited evidence exists that humans mount a mutation-specific T cell response to epithelial cancers. We used a whole-exomic-sequencing-based approach to demonstrate that tumor-infiltrating lymphocytes (TIL) from a patient with metastatic cholangiocarcinoma contained CD4+ T helper 1 (TH1) cells recognizing a mutation in erbb2 interacting protein (ERBB2IP) expressed by the cancer. After adoptive transfer of TIL containing about 25% mutation-specific polyfunctional TH1 cells, the patient achieved a decrease in target lesions with prolonged stabilization of disease. Upon disease progression, the patient was retreated with a >95% pure population of mutation-reactive TH1 cells and again experienced tumor regression. These results provide evidence that a CD4+ T cell response against a mutated antigen can be harnessed to mediate regression of a metastatic epithelial cancer.


Journal of Immunotherapy | 2013

Cancer regression and neurological toxicity following anti-MAGE-A3 TCR gene therapy.

Richard A. Morgan; Nachimuthu Chinnasamy; Daniel Abate-Daga; Alena Gros; Paul F. Robbins; Zhili L. Zheng; Mark E. Dudley; Steven A. Feldman; James Chih-Hsin Yang; Richard M. Sherry; Giao Q. Phan; Marybeth S. Hughes; Udai S. Kammula; Akemi D. Miller; Crystal J. Hessman; Ashley A. Stewart; Nicholas P. Restifo; Martha Quezado; Meghna Alimchandani; Avi Z. Rosenberg; Avindra Nath; Tongguang G. Wang; Bibiana Bielekova; Simone C. Wuest; Nirmala Akula; Francis J. McMahon; Susanne Wilde; Barbara Mosetter; Dolores J. Schendel; Carolyn M. Laurencot

Nine cancer patients were treated with adoptive cell therapy using autologous anti-MAGE-A3 T-cell receptors (TCR)-engineered T cells. Five patients experienced clinical regression of their cancers including 2 on-going responders. Beginning 1–2 days postinfusion, 3 patients (#’s 5, 7, and 8) experienced mental status changes, and 2 patients (5 and 8) lapsed into comas and subsequently died. Magnetic resonance imagining analysis of patients 5 and 8 demonstrated periventricular leukomalacia, and examination of their brains at autopsy revealed necrotizing leukoencephalopathy with extensive white matter defects associated with infiltration of CD3+/CD8+ T cells. Patient 7, developed Parkinson-like symptoms, which resolved over 4 weeks and fully recovered. Immunohistochemical staining of patient and normal brain samples demonstrated rare positively staining neurons with an antibody that recognizes multiple MAGE-A family members. The TCR used in this study recognized epitopes in MAGE-A3/A9/A12. Molecular assays of human brain samples using real-time quantitative-polymerase chain reaction, Nanostring quantitation, and deep-sequencing indicated that MAGE-A12 was expressed in human brain (and possibly MAGE-A1, MAGE-A8, and MAGE-A9). This previously unrecognized expression of MAGE-A12 in human brain was possibly the initiating event of a TCR-mediated inflammatory response that resulted in neuronal cell destruction and raises caution for clinical applications targeting MAGE-A family members with highly active immunotherapies.


Journal of Clinical Investigation | 2014

PD-1 identifies the patient-specific CD8 + tumor-reactive repertoire infiltrating human tumors

Alena Gros; Paul F. Robbins; Xin Yao; Yong F. Li; Eric Tran; John R. Wunderlich; Arnold Mixon; Shawn Farid; Mark E. Dudley; Ken Ichi Hanada; Jorge R. Almeida; Sam Darko; James Chih-Hsin Yang; Steven A. Rosenberg

Adoptive transfer of tumor-infiltrating lymphocytes (TILs) can mediate regression of metastatic melanoma; however, TILs are a heterogeneous population, and there are no effective markers to specifically identify and select the repertoire of tumor-reactive and mutation-specific CD8⁺ lymphocytes. The lack of biomarkers limits the ability to study these cells and develop strategies to enhance clinical efficacy and extend this therapy to other malignancies. Here, we evaluated unique phenotypic traits of CD8⁺ TILs and TCR β chain (TCRβ) clonotypic frequency in melanoma tumors to identify patient-specific repertoires of tumor-reactive CD8⁺ lymphocytes. In all 6 tumors studied, expression of the inhibitory receptors programmed cell death 1 (PD-1; also known as CD279), lymphocyte-activation gene 3 (LAG-3; also known as CD223), and T cell immunoglobulin and mucin domain 3 (TIM-3) on CD8⁺ TILs identified the autologous tumor-reactive repertoire, including mutated neoantigen-specific CD8⁺ lymphocytes, whereas only a fraction of the tumor-reactive population expressed the costimulatory receptor 4-1BB (also known as CD137). TCRβ deep sequencing revealed oligoclonal expansion of specific TCRβ clonotypes in CD8⁺PD-1⁺ compared with CD8⁺PD-1- TIL populations. Furthermore, the most highly expanded TCRβ clonotypes in the CD8⁺ and the CD8⁺PD-1⁺ populations recognized the autologous tumor and included clonotypes targeting mutated antigens. Thus, in addition to the well-documented negative regulatory role of PD-1 in T cells, our findings demonstrate that PD-1 expression on CD8⁺ TILs also accurately identifies the repertoire of clonally expanded tumor-reactive cells and reveal a dual importance of PD-1 expression in the tumor microenvironment.


Nature Medicine | 2016

Prospective identification of neoantigen-specific lymphocytes in the peripheral blood of melanoma patients

Alena Gros; Maria R. Parkhurst; Eric Tran; Anna Pasetto; Paul F. Robbins; Sadia Ilyas; Todd D. Prickett; Jared J. Gartner; Jessica S Crystal; Ilana M. Roberts; Kasia Trebska-Mcgowan; John R. Wunderlich; James Chih-Hsin Yang; Steven A. Rosenberg

Detection of lymphocytes that target tumor-specific mutant neoantigens—derived from products encoded by mutated genes in the tumor—is mostly limited to tumor-resident lymphocytes, but whether these lymphocytes often occur in the circulation is unclear. We recently reported that intratumoral expression of the programmed cell death 1 (PD-1) receptor can guide the identification of the patient-specific repertoire of tumor-reactive CD8+ lymphocytes that reside in the tumor. In view of these findings, we investigated whether PD-1 expression on peripheral blood lymphocytes could be used as a biomarker to detect T cells that target neoantigens. By using a high-throughput personalized screening approach, we identified neoantigen-specific lymphocytes in the peripheral blood of three of four melanoma patients. Despite their low frequency in the circulation, we found that CD8+PD-1+, but not CD8+PD-1−, cell populations had lymphocytes that targeted 3, 3 and 1 unique, patient-specific neoantigens, respectively. We show that neoantigen-specific T cells and gene-engineered lymphocytes expressing neoantigen-specific T cell receptors (TCRs) isolated from peripheral blood recognized autologous tumors. Notably, the tumor-antigen specificities and TCR repertoires of the circulating and tumor-infiltrating CD8+PD-1+ cells appeared similar, implying that the circulating CD8+PD-1+ lymphocytes could provide a window into the tumor-resident antitumor lymphocytes. Thus, expression of PD-1 identifies a diverse and patient-specific antitumor T cell response in peripheral blood, providing a novel noninvasive strategy to develop personalized therapies using neoantigen-reactive lymphocytes or TCRs to treat cancer.


Science | 2015

Immunogenicity of somatic mutations in human gastrointestinal cancers

Eric Tran; Mojgan Ahmadzadeh; Yong-Chen Lu; Alena Gros; Paul F. Robbins; Jared J. Gartner; Zhili Zheng; Yong F. Li; Satyajit Ray; John R. Wunderlich; Robert Somerville; Steven A. Rosenberg

Low mutation rate okay for T cells Cancers that tend to have high numbers of mutations, such as melanoma and smoking-induced lung cancer, respond well to immunotherapies, whereas those with fewer mutations, such as pancreatic cancer, do not. Tran et al. searched for tumor mutation–reactive T cells in 10 patients with metastatic gastrointestinal cancers, which have relatively low mutation burdens, and discovered that 9 out of 10 harbored such cells. T cells from one patient recognized a mutation common to many types of cancers. Engineering T cells to express this particular mutation-reactive T cell receptor may extend adoptive cell immunotherapy to a larger pool of patients than previously anticipated. Science, this issue p. 1387 Individuals with cancers that have low mutation frequencies often harbor mutation-reactive T cells. It is unknown whether the human immune system frequently mounts a T cell response against mutations expressed by common epithelial cancers. Using a next-generation sequencing approach combined with high-throughput immunologic screening, we demonstrated that tumor-infiltrating lymphocytes (TILs) from 9 out of 10 patients with metastatic gastrointestinal cancers contained CD4+ and/or CD8+ T cells that recognized one to three neo-epitopes derived from somatic mutations expressed by the patient’s own tumor. There were no immunogenic epitopes shared between these patients. However, we identified in one patient a human leukocyte antigen–C*08:02–restricted T cell receptor from CD8+ TILs that targeted the KRASG12D hotspot driver mutation found in many human cancers. Thus, a high frequency of patients with common gastrointestinal cancers harbor immunogenic mutations that can potentially be exploited for the development of highly personalized immunotherapies.


Cancer Research | 2015

Akt Inhibition Enhances Expansion of Potent Tumor-Specific Lymphocytes with Memory Cell Characteristics

Joseph G. Crompton; Madhusudhanan Sukumar; Rahul Roychoudhuri; David Clever; Alena Gros; Robert L. Eil; Eric Tran; Ken Ichi Hanada; Zhiya Yu; Douglas C. Palmer; Sid P. Kerkar; Ryan D. Michalek; Trevor Upham; Anthony J. Leonardi; Nicolas Acquavella; Ena Wang; Francesco M. Marincola; Luca Gattinoni; Pawel Muranski; Mark S. Sundrud; Christopher A. Klebanoff; Steven A. Rosenberg; Nicholas P. Restifo

Adoptive cell therapy (ACT) using autologous tumor-infiltrating lymphocytes (TIL) results in complete regression of advanced cancer in some patients, but the efficacy of this potentially curative therapy may be limited by poor persistence of TIL after adoptive transfer. Pharmacologic inhibition of the serine/threonine kinase Akt has recently been shown to promote immunologic memory in virus-specific murine models, but whether this approach enhances features of memory (e.g., long-term persistence) in TIL that are characteristically exhausted and senescent is not established. Here, we show that pharmacologic inhibition of Akt enables expansion of TIL with the transcriptional, metabolic, and functional properties characteristic of memory T cells. Consequently, Akt inhibition results in enhanced persistence of TIL after adoptive transfer into an immunodeficient animal model and augments antitumor immunity of CD8 T cells in a mouse model of cell-based immunotherapy. Pharmacologic inhibition of Akt represents a novel immunometabolomic approach to enhance the persistence of antitumor T cells and improve the efficacy of cell-based immunotherapy for metastatic cancer.


Nature | 2016

Ionic immune suppression within the tumour microenvironment limits T cell effector function.

Robert L. Eil; Suman K. Vodnala; David Clever; Christopher A. Klebanoff; Madhusudhanan Sukumar; Jenny H. Pan; Douglas C. Palmer; Alena Gros; Tori N. Yamamoto; Shashank J. Patel; Geoffrey Guittard; Zhiya Yu; Valentina Carbonaro; Klaus Okkenhaug; David S. Schrump; W. Marston Linehan; Rahul Roychoudhuri; Nicholas P. Restifo

Tumours progress despite being infiltrated by tumour-specific effector T cells. Tumours contain areas of cellular necrosis, which are associated with poor survival in a variety of cancers. Here, we show that necrosis releases intracellular potassium ions into the extracellular fluid of mouse and human tumours, causing profound suppression of T cell effector function. Elevation of the extracellular potassium concentration ([K+]e) impairs T cell receptor (TCR)-driven Akt–mTOR phosphorylation and effector programmes. Potassium-mediated suppression of Akt–mTOR signalling and T cell function is dependent upon the activity of the serine/threonine phosphatase PP2A. Although the suppressive effect mediated by elevated [K+]e is independent of changes in plasma membrane potential (Vm), it requires an increase in intracellular potassium ([K+]i). Accordingly, augmenting potassium efflux in tumour-specific T cells by overexpressing the potassium channel Kv1.3 lowers [K+]i and improves effector functions in vitro and in vivo and enhances tumour clearance and survival in melanoma-bearing mice. These results uncover an ionic checkpoint that blocks T cell function in tumours and identify potential new strategies for cancer immunotherapy.


Molecular Therapy | 2010

Hyaluronidase Expression by an Oncolytic Adenovirus Enhances Its Intratumoral Spread and Suppresses Tumor Growth

Sonia Guedan; Juan J. Rojas; Alena Gros; Elena Mercade; Manel Cascallo; Ramon Alemany

Successful virotherapy requires efficient virus spread within tumors. We tested whether the expression of hyaluronidase, an enzyme which dissociates the extracellular matrix (ECM), could enhance the intratumoral distribution of an oncolytic adenovirus and improve its therapeutic activity. As a proof of concept, we demonstrated that intratumoral coadministration of hyaluronidase in mice-bearing tumor xenografts improves the antitumor activity of an oncolytic adenovirus. Next, we constructed a replication-competent adenovirus expressing a soluble form of the human sperm hyaluronidase (PH20) under the control of the major late promoter (MLP) (AdwtRGD-PH20). Intratumoral treatment of human melanoma xenografts with AdwtRGD-PH20 resulted in degradation of hyaluronan (HA), enhanced viral distribution, and induced tumor regression in all treated tumors. Finally, the PH20 cDNA was inserted in an oncolytic adenovirus that selectively kills pRb pathway-defective tumor cells. The antitumoral activity of the novel oncolytic adenovirus expressing PH20 (ICOVIR17) was compared to that of the parental virus ICOVIR15. ICOVIR17 showed more antitumor efficacy following intratumoral and systemic administration in mice with prestablished tumors, along with an improved spread of the virus within the tumor. Importantly, a single intravenous dose of ICOVIR17 induced tumor regression in 60% of treated tumors. These results indicate that ICOVIR17 is a promising candidate for clinical testing.


Clinical Cancer Research | 2012

Myeloid Cells Obtained from the Blood but Not from the Tumor Can Suppress T-cell Proliferation in Patients with Melanoma

Alena Gros; John R. Wunderlich; Mojgan Ahmadzadeh; Mark E. Dudley; Steven A. Rosenberg

Purpose: Myeloid-derived suppressor cells (MDSC) have emerged as an immune-regulatory cell type that is expanded in tumor-bearing mice, but less is known about their immune-suppressive role in patients with cancer. Experimental Design: To study the importance of MDSC in patients with melanoma, we characterized the frequency, phenotype, and suppressive function of blood myeloid-derived cells and tumor-infiltrating myeloid cells in 26 freshly resected melanomas. Results: Blood and tumor-infiltrating myeloid cells (Lin− CD11b+) could be phenotypically and morphologically classified into monocytes/macrophages, neutrophils, eosinophils, and immature myeloid cells according to marker expression (CD14+, CD14− CD15hi, CD14− CD15int, and CD14− CD15−, respectively). In contrast to the expansion of MDSC reported in tumor-bearing mice, we found no differences in the frequency and phenotype of myeloid subsets in the blood of patients with melanoma compared with healthy donors. Myeloid cells represented 12% of the live cells in the melanoma cell suspensions, and were phenotypically diverse with high tumor-to-tumor variability. Interestingly, a positive association was found between the percentage of Tregs and granulocytic cells (Lin− CD11b+ CD14−CD15+) infiltrating melanoma tumors. However, melanoma-infiltrating myeloid cells displayed impaired suppression of nonspecific T-cell proliferation compared with peripheral blood myeloid cells, in which monocytes and eosinophils were suppressive. Conclusions: Our findings provide a first characterization of the nature and suppressive function of the melanoma myeloid infiltrate and indicate that the suppressive function of MDSC in patients with melanoma seems far less than that based on murine tumor models. Clin Cancer Res; 18(19); 5212–23. ©2012 AACR.


Journal of Clinical Investigation | 2016

Memory T cell–driven differentiation of naive cells impairs adoptive immunotherapy

Christopher A. Klebanoff; Christopher D. Scott; Anthony J. Leonardi; Tori N. Yamamoto; Anthony C. Cruz; Claudia Ouyang; Madhu Ramaswamy; Rahul Roychoudhuri; Yun Ji; Robert L. Eil; Madhusudhanan Sukumar; Joseph G. Crompton; Douglas C. Palmer; Zachary A. Borman; David Clever; Stacy K. Thomas; Shashankkumar Patel; Zhiya Yu; Pawel Muranski; Hui Liu; Ena Wang; Francesco M. Marincola; Alena Gros; Luca Gattinoni; Steven A. Rosenberg; Richard M. Siegel; Nicholas P. Restifo

Adoptive cell transfer (ACT) of purified naive, stem cell memory, and central memory T cell subsets results in superior persistence and antitumor immunity compared with ACT of populations containing more-differentiated effector memory and effector T cells. Despite a clear advantage of the less-differentiated populations, the majority of ACT trials utilize unfractionated T cell subsets. Here, we have challenged the notion that the mere presence of less-differentiated T cells in starting populations used to generate therapeutic T cells is sufficient to convey their desirable attributes. Using both mouse and human cells, we identified a T cell-T cell interaction whereby antigen-experienced subsets directly promote the phenotypic, functional, and metabolic differentiation of naive T cells. This process led to the loss of less-differentiated T cell subsets and resulted in impaired cellular persistence and tumor regression in mouse models following ACT. The T memory-induced conversion of naive T cells was mediated by a nonapoptotic Fas signal, resulting in Akt-driven cellular differentiation. Thus, induction of Fas signaling enhanced T cell differentiation and impaired antitumor immunity, while Fas signaling blockade preserved the antitumor efficacy of naive cells within mixed populations. These findings reveal that T cell subsets can synchronize their differentiation state in a process similar to quorum sensing in unicellular organisms and suggest that disruption of this quorum-like behavior among T cells has potential to enhance T cell-based immunotherapies.

Collaboration


Dive into the Alena Gros's collaboration.

Top Co-Authors

Avatar

Steven A. Rosenberg

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Paul F. Robbins

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Todd D. Prickett

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Jared J. Gartner

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Maria R. Parkhurst

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eric Tran

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

John R. Wunderlich

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge