Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alena Krejci is active.

Publication


Featured researches published by Alena Krejci.


Science Signaling | 2009

Direct Response to Notch Activation: Signaling Crosstalk and Incoherent Logic

Alena Krejci; Fred Bernard; Ben E. Housden; Stephanie Collins; Sarah Bray

Identification of the direct target genes of Notch reveals complex input into multiple signaling pathways that goes beyond coordination of transcriptional networks. Micromanaging Development By combining microarray gene expression data with occupancy by a key DNA binding transducer in the Notch pathway, Krejčí et al. set a gold standard for target genes that are regulated directly by Notch. The analysis also reveals incoherent network logic in which Notch signaling activates both positive and negative regulators of several pathways, which may allow Notch to micromanage multiple signaling networks and poise cells for different responses depending on the context. Detailed analysis of several Notch direct target genes in vivo reveals that many of the identified genes participate in regulation of adult muscle progenitors in Drosophila. Notch is the receptor in one of a small group of conserved signaling pathways that are essential at multiple stages in development. Although the mechanism of transduction impinges directly on the nucleus to regulate transcription through the CSL [CBF-1/Su(H)/LAG-1] DNA binding protein, there are few known direct target genes. Thus, relatively little is known about the immediate cellular consequences of Notch activation. We therefore set out to determine the genome-wide response to Notch activation by analyzing the changes in messenger RNA (mRNA) expression and the sites of CSL occupancy within 30 minutes of activating Notch in Drosophila cells. Through combining these data, we identify high-confidence direct targets of Notch that are implicated in the maintenance of adult muscle progenitors in vivo. These targets are enriched in cell morphogenesis genes and in components of other cell signaling pathways, especially the epidermal growth factor receptor (EGFR) pathway. Also evident are examples of incoherent network logic, where Notch stimulates the expression of both a gene and the repressor of that gene, which may result in a transient window of competence after Notch activation. Furthermore, because targets comprise both positive and negative regulators, cells become poised for both outcomes, suggesting one mechanism through which Notch activation can lead to opposite effects in different contexts.


Molecular and Cellular Biology | 2005

Hairless-Mediated Repression of Notch Target Genes Requires the Combined Activity of Groucho and CtBP Corepressors

Anja C. Nagel; Alena Krejci; Gennady Tenin; Alejandro Bravo-Patiño; Sarah Bray; Dieter Maier; Anette Preiss

ABSTRACT Notch signal transduction centers on a conserved DNA-binding protein called Suppressor of Hairless [Su(H)] in Drosophila species. In the absence of Notch activation, target genes are repressed by Su(H) acting in conjunction with a partner, Hairless, which contains binding motifs for two global corepressors, CtBP and Groucho (Gro). Usually these corepressors are thought to act via different mechanisms; complexed with other transcriptional regulators, they function independently and/or redundantly. Here we have investigated the requirement for Gro and CtBP in Hairless-mediated repression. Unexpectedly, we find that mutations inactivating one or the other binding motif can have detrimental effects on Hairless similar to those of mutations that inactivate both motifs. These results argue that recruitment of one or the other corepressor is not sufficient to confer repression in the context of the Hairless-Su(H) complex; Gro and CtBP need to function in combination. In addition, we demonstrate that Hairless has a second mode of repression that antagonizes Notch intracellular domain and is independent of Gro or CtBP binding.


Nature Neuroscience | 2012

Chromatin modification of Notch targets in olfactory receptor neuron diversification

Keita Endo; M. Rezaul Karim; Hiroaki Taniguchi; Alena Krejci; Emi Kinameri; Matthias Siebert; Kei Ito; Sarah Bray; Adrian W. Moore

Neuronal-class diversification is central during neurogenesis. This requirement is exemplified in the olfactory system, which utilizes a large array of olfactory receptor neuron (ORN) classes. We discovered an epigenetic mechanism in which neuron diversity is maximized via locus-specific chromatin modifications that generate context-dependent responses from a single, generally used intracellular signal. Each ORN in Drosophila acquires one of three basic identities defined by the compound outcome of three iterated Notch signaling events during neurogenesis. Hamlet, the Drosophila Evi1 and Prdm16 proto-oncogene homolog, modifies cellular responses to these iteratively used Notch signals in a context-dependent manner, and controls odorant receptor gene choice and ORN axon targeting specificity. In nascent ORNs, Hamlet erases the Notch state inherited from the parental cell, enabling a modified response in a subsequent round of Notch signaling. Hamlet directs locus-specific modifications of histone methylation and histone density and controls accessibility of the DNA-binding protein Suppressor of Hairless at the Notch target promoter.


Journal of Cell Science | 2008

Grainy head promotes expression of septate junction proteins and influences epithelial morphogenesis.

Maithreyi Narasimha; Anne Uv; Alena Krejci; Nicholas H. Brown; Sarah Bray

Transcription factors of the Grainy head (Grh) family are required in epithelia to generate the impermeable apical layer that protects against the external environment. This function is conserved in vertebrates and invertebrates, despite the differing molecular composition of the protective barrier. Epithelial cells also have junctions that create a paracellular diffusion barrier (tight or septate junctions). To examine whether Grh has a role in regulating such characteristics, we used an epidermal layer in the Drosophila embryo that has no endogenous Grh and lacks septate junctions, the amnioserosa. Expression of Grh in the amnioserosa caused severe defects in dorsal closure, a process similar to wound closure, and induced robust expression of the septate junction proteins Coracle, Fasciclin 3 and Sinuous. Grh-binding sites are present within the genes encoding these proteins, consistent with them being direct targets. Removal of Grh from imaginal disc cells caused a reduction in Fasciclin 3 and Coracle levels, suggesting that Grh normally fine tunes their epithelial expression and hence contributes to barrier properties. The fact that ectopic Grh arrests dorsal closure also suggests that this dynamic process relies on epithelia having distinct adhesive properties conferred by differential deployment of Grh.


Development | 2013

Notch cooperates with Lozenge/Runx to lock haemocytes into a differentiation programme

Ana Terriente-Felix; Jinghua Li; Stephanie Collins; Amy Mulligan; Ian Reekie; Fred Bernard; Alena Krejci; Sarah Bray

The diverse functions of Notch signalling imply that it must elicit context-specific programmes of gene expression. With the aim of investigating how Notch drives cells to differentiate, we have used a genome-wide approach to identify direct Notch targets in Drosophila haemocytes (blood cells), where Notch promotes crystal cell differentiation. Many of the identified Notch-regulated enhancers contain Runx and GATA motifs, and we demonstrate that binding of the Runx protein Lozenge (Lz) is required for enhancers to be competent to respond to Notch. Functional studies of targets, such as klumpfuss (ERG/WT1 family) and pebbled/hindsight (RREB1 homologue), show that Notch acts both to prevent the cells adopting alternate cell fates and to promote morphological characteristics associated with crystal cell differentiation. Inappropriate activity of Klumpfuss perturbs the differentiation programme, resulting in melanotic tumours. Thus, by acting as a master regulator, Lz directs Notch to activate selectively a combination of target genes that correctly locks cells into the differentiation programme.


Journal of Immunology | 2011

Epigenetic Changes at Il12rb2 and Tbx21 in Relation to Plasticity Behavior of Th17 Cells

David Bending; Stephen A. Newland; Alena Krejci; Jenny M. Phillips; Sarah Bray; Anne Cooke

Plasticity within Th cell populations may play a role in enabling site-specific immune responses to infections while limiting tissue destruction. Epigenetic processes are fundamental to such plasticity; however, to date, most investigations have focused on in vitro-generated T cells. In this study, we have examined the molecular mechanisms underpinning murine Th17 plasticity in vivo by assessing H3K4 and H3K27 trimethylation marks at Tbx21, Rorc, Il17a, Ifng, and Il12rb2 loci in purified ex vivo-isolated and in vitro-generated Th17 cells. Although both populations had largely comparable epigenetic signatures, including bivalent marks at Tbx21, freshly isolated ex vivo Th17 cells displayed restricted expression from Il12rb2 due to the presence of repressive chromatin modifications. This receptor, however, could be upregulated on isolated ex vivo Th17 cells after in vitro activation or by in vivo immunization and was augmented by the presence of IFN-γ. Such activated cells could then be deviated toward a Th1-like profile. We show that IL-12 stimulation removes H3K27 trimethylation modifications at Tbx21/T-bet leading to enhanced T-bet expression with in vitro Th17 cells. Our study reveals important potential phenotypic differences between ex vivo- and in vitro-generated Th17 cells and provides mechanistic insight into Th17 cell plasticity.


Development | 2010

Specificity of Notch pathway activation: Twist controls the transcriptional output in adult muscle progenitors

Fred Bernard; Alena Krejci; Ben E. Housden; Boris Adryan; Sarah Bray

Cell-cell signalling mediated by Notch regulates many different developmental and physiological processes and is involved in a variety of human diseases. Activation of Notch impinges directly on gene expression through the Suppressor of Hairless [Su(H)] DNA-binding protein. A major question that remains to be elucidated is how the same Notch signalling pathway can result in different transcriptional responses depending on the cellular context and environment. Here, we have investigated the factors required to confer this specific response in Drosophila adult myogenic progenitor-related cells. Our analysis identifies Twist (Twi) as a crucial co-operating factor. Enhancers from several direct Notch targets require a combination of Twi and Notch activities for expression in vivo; neither alone is sufficient. Twi is bound at target enhancers prior to Notch activation and enhances Su(H) binding to these regulatory regions. To determine the breadth of the combinatorial regulation we mapped Twi occupancy genome-wide in DmD8 myogenic progenitor-related cells by chromatin immunoprecipitation. Comparing the sites bound by Su(H) and by Twi in these cells revealed a strong association, identifying a large spectrum of co-regulated genes. We conclude that Twi is an essential Notch co-regulator in myogenic progenitor cells and has the potential to confer specificity on Notch signalling at over 170 genes, showing that a single factor can have a profound effect on the output of the pathway.


Journal of Neurochemistry | 2006

The transcriptional repressor REST is a critical regulator of the neurosecretory phenotype.

Alexander W. Bruce; Alena Krejci; Lezanne Ooi; Jim Deuchars; Ian C. Wood; Vladimir Dolezal; Noel J. Buckley

Release of distinct cellular cargoes in response to specific stimuli is a process fundamental to all higher eukaryotes and controlled by the regulated secretory pathway (RSP). However, the mechanism by which genes involved in the RSP are selectively expressed, leading to the establishment and appropriate functioning of regulated secretion remaining largely unknown. Using the rat pheochromocytoma cell line PC12, we provide evidence that, by controlling expression of many genes involved in the RSP, the transcriptional repressor REST can regulate this pathway and hence the neurosecretory phenotype. Introduction of REST transgenes into PC12 cells leads to the repression of many genes, the products of which are involved in regulated secretion. Moreover, chromatin immunoprecipitation assays show that many of the repressed genes recruit the recombinant REST protein to RE1 sites within their promoters and abrogation of REST function leads to reactivation of these transcripts. In addition to the observed transcriptional effects, PC12 cells expressing REST have fewer secretory granules and a reduction in the ability to store and release noradrenaline. Furthermore, an important trigger for synaptic release, influx of calcium through voltage‐operated calcium channels, is compromised. This is the first demonstration of a transcription factor that directly controls expression of many major components of the RSP and provides further insight into the function of REST.


The EMBO Journal | 2012

Dissecting the mechanisms of Notch induced hyperplasia

Alexandre Djiane; Alena Krejci; Frédéric Bernard; Silvie Fexova; Katherine Millen; Sarah Bray

The outcome of the Notch pathway on proliferation depends on cellular context, being growth promotion in some, including several cancers, and growth inhibition in others. Such disparate outcomes are evident in Drosophila wing discs, where Notch overactivation causes hyperplasia despite having localized inhibitory effects on proliferation. To understand the underlying mechanisms, we have used genomic strategies to identify the Notch‐CSL target genes directly activated during wing disc hyperplasia. Among them were genes involved in both autonomous and non‐autonomous regulation of proliferation, growth and cell death, providing molecular explanations for many characteristics of Notch induced wing disc hyperplasia previously reported. The Notch targets exhibit different response patterns, which are shaped by both positive and negative feed‐forward regulation between the Notch targets themselves. We propose, therefore, that both the characteristics of the direct Notch targets and their cross‐regulatory relationships are important in coordinating the pattern of hyperplasia.


PLOS Genetics | 2013

Transcriptional Dynamics Elicited by a Short Pulse of Notch Activation Involves Feed-Forward Regulation by E(spl)/Hes Genes

Ben E. Housden; Audrey Qiuyan Fu; Alena Krejci; Fred Bernard; Bettina Fischer; Simon Tavaré; Steven Paul Russell; Sarah Bray

Dynamic activity of signaling pathways, such as Notch, is vital to achieve correct development and homeostasis. However, most studies assess output many hours or days after initiation of signaling, once the outcome has been consolidated. Here we analyze genome-wide changes in transcript levels, binding of the Notch pathway transcription factor, CSL [Suppressor of Hairless, Su(H), in Drosophila], and RNA Polymerase II (Pol II) immediately following a short pulse of Notch stimulation. A total of 154 genes showed significant differential expression (DE) over time, and their expression profiles stratified into 14 clusters based on the timing, magnitude, and direction of DE. E(spl) genes were the most rapidly upregulated, with Su(H), Pol II, and transcript levels increasing within 5–10 minutes. Other genes had a more delayed response, the timing of which was largely unaffected by more prolonged Notch activation. Neither Su(H) binding nor poised Pol II could fully explain the differences between profiles. Instead, our data indicate that regulatory interactions, driven by the early-responding E(spl)bHLH genes, are required. Proposed cross-regulatory relationships were validated in vivo and in cell culture, supporting the view that feed-forward repression by E(spl)bHLH/Hes shapes the response of late-responding genes. Based on these data, we propose a model in which Hes genes are responsible for co-ordinating the Notch response of a wide spectrum of other targets, explaining the critical functions these key regulators play in many developmental and disease contexts.

Collaboration


Dive into the Alena Krejci's collaboration.

Top Co-Authors

Avatar

Sarah Bray

University of Cambridge

View shared research outputs
Top Co-Authors

Avatar

Fred Bernard

University of Cambridge

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Vladimir Dolezal

Academy of Sciences of the Czech Republic

View shared research outputs
Top Co-Authors

Avatar

Yuri M. Moshkin

Erasmus University Rotterdam

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anne Uv

University of Gothenburg

View shared research outputs
Researchain Logo
Decentralizing Knowledge