Alena Musilova
Academy of Sciences of the Czech Republic
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Alena Musilova.
Nature Genetics | 2005
Norbert Hubner; Caroline A. Wallace; Heike Zimdahl; Enrico Petretto; Herbert Schulz; Fiona Maciver; Michael Mueller; Oliver Hummel; Jan Monti; Vaclav Zidek; Alena Musilova; Vladimir Kren; Helen C. Causton; Gabriele Born; Sabine Schmidt; Anita Müller; Stuart A. Cook; Theodore W. Kurtz; John C. Whittaker; Michal Pravenec; Timothy J. Aitman
Integration of genome-wide expression profiling with linkage analysis is a new approach to identifying genes underlying complex traits. We applied this approach to the regulation of gene expression in the BXH/HXB panel of rat recombinant inbred strains, one of the largest available rodent recombinant inbred panels and a leading resource for genetic analysis of the highly prevalent metabolic syndrome. In two tissues important to the pathogenesis of the metabolic syndrome, we mapped cis- and trans-regulatory control elements for expression of thousands of genes across the genome. Many of the most highly linked expression quantitative trait loci are regulated in cis, are inherited essentially as monogenic traits and are good candidate genes for previously mapped physiological quantitative trait loci in the rat. By comparative mapping we generated a data set of 73 candidate genes for hypertension that merit testing in human populations. Mining of this publicly available data set is expected to lead to new insights into the genes and regulatory pathways underlying the extensive range of metabolic and cardiovascular disease phenotypes that segregate in these recombinant inbred strains.
Nature Genetics | 2001
Michal Pravenec; Vladimír Landa; Vaclav Zidek; Alena Musilova; Vladimir Kren; Ludmila Kazdova; Timothy J. Aitman; Anne M. Glazier; Azeddine Ibrahimi; Nada A. Abumrad; Nianning Qi; Jia-Ming Wang; Elizabeth St. Lezin; Theodore W. Kurtz
Spontaneously hypertensive rats (SHR) display several features of the human insulin-resistance syndromes. Cd36 deficiency is genetically linked to insulin resistance in SHR. We show that transgenic expression of Cd36 in SHR ameliorates insulin resistance and lowers serum fatty acids. Our results provide direct evidence that Cd36 deficiency can promote defective insulin action and disordered fatty-acid metabolism in spontaneous hypertension.
Journal of Clinical Investigation | 1996
A. Bottger; H. A. Van Lith; Vladimir Kren; Drahomira Krenova; Vlasta Bílá; J. Vorlicek; Vaclav Zidek; Alena Musilova; Miroslava Zdobinska; Jiaming Wang; B. F. M. Van Zutphen; Theodore W. Kurtz; Michal Pravenec
The frequent coincidence of hypertension and dyslipidemia suggests that related genetic factors might underlie these common risk factors for cardiovascular disease. To investigate whether quantitative trait loci (QTLs) regulating lipid levels map to chromosomes known to contain genes regulating blood pressure, we used a genome scanning approach to map QTLs influencing cholesterol and phospholipid phenotypes in a large set of recombinant inbred strains and in congenic strains derived from the spontaneously hypertensive rat and normotensive Brown-Norway (BN.Lx) rat fed normal and high cholesterol diets. QTLs regulating lipid phenotypes were mapped by scanning the genome with 534 genetic markers. A significant relationship (P < 0.00006) was found between basal HDL2 cholesterol levels and the D19Mit2 marker on chromosome 19. Analysis of congenic strains of spontaneously hypertensive rat indicated that QTLs regulating postdietary lipid phenotypes exist also on chromosomes 8 and 20. Previous studies in the recombinant inbred and congenic strains have demonstrated the presence of blood pressure regulatory genes in corresponding segments of chromosomes 8, 19, and 20. These findings provide support for the hypothesis that blood pressure and certain lipid subfractions can be modulated by linked genes or perhaps even the same genes.
Hypertension | 1997
Elizabeth St. Lezin; Weizhong Liu; Jiaming Wang; Ning Wang; Vladimir Kren; Drahomira Krenova; Alena Musilova; Miroslava Zdobinska; Vaclav Zidek; Daniel Lau; Michal Pravenec
Recent linkage studies in the spontaneously hypertensive rat (SHR) suggest that a blood pressure regulatory gene or genes may be located on rat chromosome 1q. To investigate this possibility, we replaced a region of chromosome 1 in the SHR (defined by the markers D1Mit3 and Igf2) with the corresponding chromosome segment from the normotensive Brown-Norway (BN) strain. In male SHR congenic rats carrying the transferred BN chromosome segment, 24-hour average systolic and diastolic blood pressures were significantly lower than in male progenitor SHR. Polymerase chain reaction genotyping using 60 polymorphic microsatellite markers dispersed throughout the genome confirmed the congenic status of the new strain designated SHR.BN-D1Mit3/Igf2. These findings provide direct evidence that a blood pressure regulatory gene exists on the differential segment of chromosome 1 that is sufficient to decrease blood pressure in the SHR. The SHR.BN-D1Mit3/Igf2 congenic strain represents an important new model for fine mapping and characterization of genes on chromosome 1 involved in the pathogenesis of spontaneous hypertension.
Hypertension | 2009
Michelle D. Johnson; Liqun He; Daniel S. Herman; Hiroko Wakimoto; Caroline A. Wallace; Vaclav Zidek; Petr Mlejnek; Alena Musilova; Miroslava Šimáková; Jaroslav Vorlíček; Vladimir Kren; Ondrej Viklicky; Nathan R. Qi; Jiaming Wang; Christine E. Seidman; Jonathan G. Seidman; Theodore W. Kurtz; Timothy J. Aitman; Michal Pravenec
Hypertension in humans and experimental models has a strong hereditary basis, but identification of causative genes remains challenging. Quantitative trait loci (QTLs) for hypertension and salt sensitivity have been reported on rat chromosome 18. We set out to genetically isolate and prioritize genes within the salt-sensitivity and hypertension QTLs on the spontaneously hypertensive rat (SHR) chromosome 18 by developing and characterizing a series of congenic strains derived from the SHR and normotensive Brown Norway rat strains. The SHR.BN-D18Rat113/D18Rat82 congenic strain exhibits significantly lower blood pressure and is salt resistant compared with the SHR. Transplantation of kidneys from SHR.BN-D18Rat113/D18Rat82 donors into SHR recipients is sufficient to attenuate increased blood pressure but not salt sensitivity. Derivation of congenic sublines allowed for the separation of salt sensitivity from hypertension QTL regions. Renal expression studies with microarray and Solexa-based sequencing in parental and congenic strains identified 4 differentially expressed genes within the hypertension QTL region, one of which is an unannotated transcript encoding a previously undescribed, small, nonprotein coding RNA. Sequencing selected biological candidate genes within the minimal congenic interval revealed a nonsynonymous variant in SHR transcription factor 4. The minimal congenic interval is syntenic to a region of human chromosome 18 where significant linkage to hypertension was observed in family based linkage studies. These congenic lines provide reagents for identifying causative genes that underlie the chromosome 18 SHR QTLs for hypertension and salt sensitivity. Candidate genes identified in these studies merit further investigation as potentially causative hypertension genes in SHR and human hypertension.
Mammalian Genome | 1998
Vaclav Zidek; Alena Musilova; Jan Pintíř; Miroslava Šimáková; Michal Pravenec
Abstract. Testicular weights were studied in the mouse BXD recombinant inbred (RI) strains. These strains were derived from DBA/2J and C57BL/6J progenitors that differ significantly in their testicular weights (0.224 g ± 0.015 vs. 0.161 g ± 0.03, P < 0.0001). The heritability of testicular weights was calculated to be 0.53, and the minimum number of responsible effective factors was estimated to be 5.7. The total genome scanning of the BXD RI strains with over 1000 markers revealed a quantitative trait locus (QTL) on mouse Chromosome (Chr) 13 near the D13Mit3 marker (LOD score 6.9). This QTL region was designated Twq1 and associated with over 75% of genetic variability.
Mammalian Genome | 2002
Michal Pravenec; Vaclav Zidek; Alena Musilova; Miroslava Šimáková; Vlastimil Kostka; Petr Mlejnek; Vladimir Kren; Drahomira Krenova; Vlasta Bílá; Blanka Míková; Marie Jáchymová; Horký K; Ludmila Kazdova; Elizabeth St. Lezin; Theodore W. Kurtz
Abstract. Abnormalities in carbohydrate and lipid metabolism are common in patients with essential hypertension and in the spontaneously hypertensive rat (SHR). To identify chromosome regions contributing to this clustering of cardiovascular risk factors in the SHR, we searched for quantitative trait loci (QTL) associated with insulin resistance, glucose intolerance, and dyslipidemia by using the HXB/BXH recombinant inbred (RI) strains. Analysis of variance in RI strains suggested significant effects of genetic factors. A genome screening of the RI strains with more than 700 markers revealed QTL significantly associated with insulin resistance on Chromosomes (Chrs) 3 and 19. The Chr 19 QTL was confirmed by testing a previously derived SHR-19 congenic strain: transfer of a Chr 19 segment delineated by markers D19Rat57 and D19Mit7 from the Brown Norway (BN/Cr) strain onto the genetic background of the SHR/Ola was associated with decreased insulin and glucose concentrations and ameliorated insulin resistance at the tissue level. These findings suggest that closely linked genes on Chr 19, or perhaps even a single gene with pleiotropic effects, influence the clustering of metabolic disturbances in the SHR-BN model.
Behavior Genetics | 2002
Edita Bielavská; Vladimir Kren; Alena Musilova; Vaclav Zidek; Michal Pravenec
In the current study, we searched for quantitative trait loci (QTL) responsible for a conditioned taste aversion (CTA) measured as a decrease in the intake of a saccharin conditioned stimulus followed by an i.p. injection of 0.15 M LiCl (lithium chloride) (2 ml/100 g body weight). A genome scanning for QTL associated with CTA was performed in the HXB/BXH sets of recombinant inbred (RI) strains derived from the Brown Norway (BN-Lx) rat and the spontaneously hypertensive rat (SHR). The BN-Lx progenitor showed a significantly stronger CTA (8.3 ± 2.8%) than the SHR progenitor (27.8 ± 3.3%, p < .0001). The distribution of CTA values among RI strains was continuous, suggesting a polygenic mode of inheritance. Genome scanning of RI strains with more than 700 gene markers revealed a significant association of CTA with the D2Cebr11s4 marker on chromosome 2 (LRS = 22.7) and with the D4Cebrp149s8 marker on chromosome 4 (LRS = 23.4). The chromosome 2 putative QTL was confirmed by detecting a significant difference in CTA between the SHR progenitor (27.8 ± 3.3%) and the SHR-2 (SHR.BN-D2Rat171/D2Arb24) congenic strain (13.1 ± 4.4%, p < .01) that are genetically identical except for a segment of chromosome 2 that was transferred onto the genetic background of the SHR from the BN strain.
Hypertension Research | 2008
Jaroslav Kuneš; Zdenka Dobešová; Alena Musilova; Vaclav Zidek; Jaroslav Vorlíček; Michal Pravenec; Vladimir Kren; Josef Zicha
Recombinant inbred (RI) strains (Prague HXB/BXH set) represent a unique model that allows for permanent summation of genetic and physiological information as well as the study of age-dependent changes in phenotypes and/or gene regulation. This study compared blood pressure (BP) measured in adult animals of RI strains by radiotelemetry with BP values obtained in conscious rats of comparable age subjected to short-term carotid catheterization or with those obtained by direct carotid puncture under ether anesthesia (almost 20 years ago). After radiotelemetry recording, the contribution of major vasoactive systems to BP maintenance was studied by consecutive inhibition of the renin-angiotensin system (RAS), sympathetic nervous system (SNS), and nitric oxide synthase. We found highly significant interrelationships among baseline BP values obtained by radiotelemetry, carotid catheterization, or carotid puncture. This indicates considerable stability of RI strains over the course of their long existence, and confirms the reliability of BP values used for genetic studies performed in the past. Subsequent analysis of vasoactive system participation revealed the importance of SNS for the maintenance of BP, as determined by either radiotelemetry or catheterization. The BP of catheterized rats also correlated closely with acute captopril-induced BP changes, but this was not the case for rats measured by radiotelemetry. NO-dependent vasodilatation matched the BP effects of SNS and RAS in both measuring conditions. Residual BP (recorded at sodium nitroprusside–induced dilatation of resistance vessels) was also responsible for a significant portion of the BP variation in RI strains. Our study confirms the validity of RI strains for the further genetic and physiological research of hypertension.
Biochemical Genetics | 2003
Anita Bonne; Maria den Bieman; G. F. Gillissen; Vladimir Kren; Drahomira Krenova; Vlasta Bílá; Václav Zídek; Vlastimil Kostka; Alena Musilova; Michal Pravenec; Bert van Zutphen; Hein A. van Lith
The amplified fragment length polymorphism (AFLP) technique has been used to enhance marker density in a large set of recombinant inbred strains (H × B and B × H) derived from a spontaneously hypertensive rat (SHR/OlaIpcv) and a Brown-Norway (BN.lx/Cub) inbred strain. Thirteen different primer combinations were tested and a total of 191 polymorphic bands were detected. From these polymorphic bands 89 AFLP markers could be assigned to specific chromosomes. Several of these AFLP markers were mapped to regions with low marker density, thus filling up gaps in the existing genetic map of these recombinant inbred strains. These results substantiate the value of the AFLP technology in increasing marker density in genetic maps.