Aleš Doliška
University of Maribor
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Aleš Doliška.
Journal of Colloid and Interface Science | 2011
Tamilselvan Mohan; Rupert Kargl; Aleš Doliška; Alenka Vesel; Stefan Köstler; Volker Ribitsch; Karin Stana-Kleinschek
The wettability and surface free energy (SFE) of partly and fully regenerated cellulose model surfaces from spin coated trimethylsilyl cellulose were determined by static contact angle (SCA) measurements. In order to gain detailed insight into the desilylation reaction of the surfaces the results from SCA measurements were compared with data from other surface analytical methods, namely thickness measurements, X-ray photoelectron spectroscopy (XPS) and attenuated total reflectance infrared spectroscopy (ATR-IR). Additionally, the influence of ultra high vacuum treatment (UHV) during XPS measurements on the water wettability and surface morphology of regenerated cellulose thin films was investigated. The wetting of polar and non-polar liquids increased with prolonged regeneration time, which is reflected in the higher SFE values and polarities of the films. After UHV treatment the water SCA of partly regenerated films decreases, whereas fully regenerated cellulose shows a higher water SCA. Therefore it is assumed that volatile desilylation products tend to adsorb on partly regenerated films, which strongly influences their wettability.
Biomacromolecules | 2013
Doris Ribitsch; Antonio Orcal Yebra; Sabine Zitzenbacher; Jing Wu; Susanne Nowitsch; Georg Steinkellner; Katrin Greimel; Aleš Doliška; Gustav Oberdorfer; Christian C. Gruber; Karl Gruber; Helmut Schwab; Karin Stana-Kleinschek; Enrique Herrero Acero; Georg M. Guebitz
A cutinase from Thermomyces cellullosylitica (Thc_Cut1), hydrolyzing the synthetic polymer polyethylene terephthalate (PET), was fused with two different binding modules to improve sorption and thereby hydrolysis. The binding modules were from cellobiohydrolase I from Hypocrea jecorina (CBM) and from a polyhydroxyalkanoate depolymerase from Alcaligenes faecalis (PBM). Although both binding modules have a hydrophobic nature, it was possible to express the proteins in E. coli . Both fusion enzymes and the native one had comparable kcat values in the range of 311 to 342 s(-1) on pNP-butyrate, while the catalytic efficiencies kcat/Km decreased from 0.41 s(-1)/ μM (native enzyme) to 0.21 and 0.33 s(-1)/μM for Thc_Cut1+PBM and Thc_Cut1+CBM, respectively. The fusion enzymes were active both on the insoluble PET model substrate bis(benzoyloxyethyl) terephthalate (3PET) and on PET although the hydrolysis pattern was differed when compared to Thc_Cut1. Enhanced adsorption of the fusion enzymes was visible by chemiluminescence after incubation with a 6xHisTag specific horseradish peroxidase (HRP) labeled probe. Increased adsorption to PET by the fusion enzymes was confirmed with Quarz Crystal Microbalance (QCM-D) analysis and indeed resulted in enhanced hydrolysis activity (3.8× for Thc_Cut1+CBM) on PET, as quantified, based on released mono/oligomers.
Langmuir | 2012
Rupert Kargl; Tamilselvan Mohan; Matej Bračič; Martin R. Kulterer; Aleš Doliška; Karin Stana-Kleinschek; Volker Ribitsch
The adsorption of carboxymethyl cellulose (CMC), one of the most important cellulose derivatives, is crucial for many scientific investigations and industrial applications. Especially for surface modifications and functionalization of materials, the polymer is of interest. The adsorption properties of CMC are dependent not only on the solutions state, which can be influenced by the pH, temperature, and electrolyte concentration, but also on the chemical composition of the adsorbents. We therefore performed basic investigation studies on the interaction of CMC with a variety of polymer films. Thin films of cellulose, cellulose acetate, deacetylated cellulose acetate, polyethylene terephthalate, and cyclo olefin polymer were therefore prepared on sensors of a QCM-D (quartz crystal microbalance) and on silicon substrates. The films were characterized with respect to the thickness, wettability, and chemical composition. Subsequently, the interaction and deposition of CMC in a range of pH values without additional electrolyte were measured with the QCM-D method. A comparison of the QCM-D results showed that CMC is favorably deposited on pure cellulose films and deacetylated cellulose acetate at low pH values. Other hydrophilic surfaces such as silicon dioxide or polyvinyl alcohol coated surfaces did not adsorb CMC to a significant extent. Atomic force microcopy confirmed that the morphology of the adsorbed CMC layers differed depending on the substrate. On hydrophobic polymer films, CMC was deposited in the form of larger particles in lower amounts whereas hydrophilic cellulose substrates were to a high extent uniformly covered by adsorbed CMC. The chemical similarity of the CMC backbone seems to favor the irreversible adsorption of CMC when the molecule is almost uncharged at low pH values. A selectivity of the cellulose CMC interaction can therefore be assumed. All CMC treated polymer films exhibited an increased hydrophilicity, which confirmed their modification with the functional molecule.
Soft Matter | 2012
Tamilselvan Mohan; Stefan Spirk; Rupert Kargl; Aleš Doliška; Alenka Vesel; Ingo Salzmann; Roland Resel; Volker Ribitsch; Karin Stana-Kleinschek
The behavior of amorphous cellulose model thin films upon heat treatment is investigated. Upon heat treatment, a structural rearrangement in the films from a featureless to a fibrillar structure is observed which correlates with the regeneration time and total cellulose content as proven by atomic force microscopy and X-ray photoelectron spectroscopy. ATR-IR spectroscopy proves the presence of stronger hydrogen bonds in the heat treated surfaces which originate from a reorganization of the cellulose chains and pore structure. The rearrangement is accompanied with an increased surface hydrophobicity, a reduced swelling capacity and a reduction in the water content of the films. An increase in crystallinity of the films is not observed.
Carbohydrate Polymers | 2013
Stefan Spirk; Gerald Findenig; Aleš Doliška; Victoria E. Reichel; Nicole L. Swanson; Rupert Kargl; Volker Ribitsch; Karin Stana-Kleinschek
The preparation of thin films of chitosan-silane hybrid materials by combining sol-gel processing and spin coating is reported. A variety of silanes can be used as starting materials for the preparation of such thin films, namely tetraethoxysilane, tri-tert-butoxysilanol, trimethylethoxysilane, p-trifluoromethyltetra-fluorophenyltriethoxysilane, trivinylmethoxysilane, (methoxymethyl)trimethyl-silane, and hexamethoxydisilane. These silanes are subjected to a sol-gel process before they are added to acidic chitosan solutions. The chitosan:silane ratio is kept constant at 6:1 (w/w) and dilutions with ethanol are prepared and spin coated. Depending on the degree of dilution, film thickness can be controlled in a range between 5 and 70 nm. For the determination of additional surface properties, static water contact angle measurements and atomic force microscopy have been employed.
Carbohydrate Polymers | 2013
Tamilselvan Mohan; Rupert Kargl; Aleš Doliška; Heike M. A. Ehmann; Volker Ribitsch; Karin Stana-Kleinschek
Partially and fully regenerated cellulose model films from trimethylsilyl cellulose (TMSC) were prepared by a time dependent regeneration approach. These thin films were characterized with contact angle measurements and attenuated total reflectance infrared spectroscopy (ATR-IR). In order to get further insights into the completeness of the regeneration we studied the interaction of cellulase enzymes from Trichoderma viride with the cellulose films using a quartz crystal microbalance with dissipation (QCM-D). To support the results from the QCM-D experiments capillary zone electrophoresis (CZE) and atomic force microscopy (AFM) were applied. The changes in mass and energy dissipation due to the interaction of the enzymes with the substrates were correlated with the surface wettability and elemental composition of the regenerated films. The highest interaction activity between the films and the enzyme, as well as the highest cellulose degradation, was observed on fully regenerated cellulose films, but some degradation also occurred on pure TMSC films. The enzymatic degradation rate correlated well with the rate of regeneration. It was demonstrated that CZE can be used to support QCM-D data via the detection of enzyme hydrolysis products in the eluates of the QCM-D cells. Glucose release peaked at the same time as the maximum mass loss was detected via QCM-D. It was shown that a combination of QCM-D and CZE together with enzymatic digestion is a reliable method to determine the conversion rate of TMSC to cellulose. In addition QCM-D and AFM revealed that cellulase is irreversibly bound to hydrophobic TMSC surfaces, while pure cellulose is digested almost completely in the course of hydrolysis.
Carbohydrate Polymers | 2013
Aleš Doliška; Volker Ribitsch; Karin Stana Kleinschek; Simona Strnad
In presented study a new approach using QCM-D for biocompatibility determination was introduced. The adsorption of fibrinogen on PET and modified PET surfaces was monitored in situ using QCM-D. Protein layer thicknesses were estimated on the basis of a Voight based viscoelastic model. The hydrophilicities and morphologies of the surfaces were investigated using a goniometer and AFM. The results showed that PET surfaces coated with sulphated polysaccharides are more hydrophilic and more fibrinogen-repulsive than non-modified PET surfaces. QCM-D equipped with QTools modelling software is well-applicable to the characterisation of surface properties and can be optimised for biocompatibility determination.
Carbohydrate Polymers | 2013
Tamilselvan Mohan; Cíntia Salomão Pinto Zarth; Aleš Doliška; Rupert Kargl; Thomas Grießer; Stefan Spirk; Thomas Heinze; Karin Stana-Kleinschek
The adsorption behavior of cellulose-4-[N-methylammonium]butyrate chloride (CMABC) on two hydrophilic substrates is studied, namely nanometric cellulose model thin films and silicon dioxide substrates. The adsorption is quantified in dependence of electrolyte concentration and pH value using a quartz crystal microbalance with dissipation (QCM-D). In case of CMABC, at high ionic strengths (25-100 mM NaCl) high adsorption is observed at pH 7 (Δf(3): -15 to -17 Hz) while at lower ionic strengths (1-10 mM) less CMABC (Δf(3): -2 to -12 Hz) is deposited on the cellulose surfaces as indicated by the frequency changes using QCM-D. A change in pH value from 7 to 8 reveals an increase in adsorption. Atomic force microscopy shows that the coating of cellulose thin films with CMABC changes the morphology from a fibrillar to a particle like structure on the surface. The surface wettability with water increases with an increasing amount of CMABC on the surface compared to neat cellulose model films. At lower pH values (3 and 5), CMABC does not adsorb onto the cellulose model thin films. XPS is used to validate the results and to determine the nitrogen content of the surfaces. In addition, adsorption of CMABC onto another hydrophilic and negatively charged substrate, silicon dioxide coated quartz crystals, cannot be detected at different pH values and electrolyte concentrations as proven by QCM-D.
ACS Applied Materials & Interfaces | 2012
Tamilselvan Mohan; Rupert Kargl; Stefan Köstler; Aleš Doliška; Gerald Findenig; Volker Ribitsch; Karin Stana-Kleinschek
A method for the immobilization of functional molecules on cellulose surfaces was developed. The irreversible deposition of the water-soluble polyelectrolyte carboxymethyl cellulose (CMC) on solid cellulose surfaces was used as a basis for this immobilization. CMC was modified using aminofluorescein (AMF) as a model compound for a functional molecule. The carbodiimide mediated coupling efficiency of AMF to CMC was studied in detail, and the functional conjugates were isolated. A quartz crystal microbalance with dissipation was employed to study the immobilization of the functionalized CMC onto cellulose model films in situ. The influence of the carbodiimide concentration, the degree of substitution, and the molecular weight of CMC on the immobilization process was investigated. Atomic force microscopy was used to characterize the changes in the surface morphology of the modified cellulose films. Finally, microspotted arrays of AMF-CMC conjugates were prepared with the knowledge obtained from the basic interaction studies. The successful deposition of AMF-CMC conjugates onto cellulose surfaces was proven by fluorescence microscopy. The conjugation of functional molecules to CMC and the subsequent deposition of these products on cellulose can be seen as a versatile method to immobilize these molecules for applications in the field of microarrays and other sensor surfaces. It offers the possibility to introduce new properties on a variety of cellulosic materials.
Macromolecular Bioscience | 2011
Martin Gericke; Aleš Doliška; Jan Stana; Tim Liebert; Thomas Heinze; Karin Stana-Kleinschek
In the present study, blood-compatible PET surfaces were prepared by coating with anticoagulant cellulose sulfates that were synthesized homogeneously in ionic liquids. The adsorption behavior of polysaccharides on PET films was investigated using QCM-D. It was demonstrated that pre-coating with different amino-group-containing polysaccharides improves the affinity toward cellulose sulfate. Moreover, the effect of different degrees of sulfation on the adsorption process was evaluated. Based on these results, several layer-by-layer coated PET foils were prepared that showed significantly improved blood compatibility compared to the initial untreated material.