Aleš Pěnčík
Swedish University of Agricultural Sciences
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Aleš Pěnčík.
Nature | 2012
Elke Barbez; Martin Kubeš; Jakub Rolčík; Chloé Béziat; Aleš Pěnčík; Bangjun Wang; Michel Ruiz Rosquete; Jinsheng Zhu; Petre I. Dobrev; Yuree Lee; Eva Zažímalová; Jan Petrášek; Markus Geisler; Jiří Friml; Jürgen Kleine-Vehn
The phytohormone auxin acts as a prominent signal, providing, by its local accumulation or depletion in selected cells, a spatial and temporal reference for changes in the developmental program. The distribution of auxin depends on both auxin metabolism (biosynthesis, conjugation and degradation) and cellular auxin transport. We identified in silico a novel putative auxin transport facilitator family, called PIN-LIKES (PILS). Here we illustrate that PILS proteins are required for auxin-dependent regulation of plant growth by determining the cellular sensitivity to auxin. PILS proteins regulate intracellular auxin accumulation at the endoplasmic reticulum and thus auxin availability for nuclear auxin signalling. PILS activity affects the level of endogenous auxin indole-3-acetic acid (IAA), presumably via intracellular accumulation and metabolism. Our findings reveal that the transport machinery to compartmentalize auxin within the cell is of an unexpected molecular complexity and demonstrate this compartmentalization to be functionally important for a number of developmental processes.
Nature Communications | 2012
Zhaojun Ding; Bangjun Wang; Ignacio Moreno; Nikoleta Dupláková; Sibu Simon; Nicola Carraro; Jesica Reemmer; Aleš Pěnčík; Xu Chen; Ricardo Tejos; Petr Skůpa; Stephan Pollmann; Jozef Mravec; Jan Petrášek; Eva Zažímalová; David Honys; Jakub Rolčík; Angus S. Murphy; Ariel Orellana; Markus Geisler; Jiří Friml
Auxin is a key coordinative signal required for many aspects of plant development and its levels are controlled by auxin metabolism and intercellular auxin transport. Here we find that a member of PIN auxin transporter family, PIN8 is expressed in male gametophyte of Arabidopsis thaliana and has a crucial role in pollen development and functionality. Ectopic expression in sporophytic tissues establishes a role of PIN8 in regulating auxin homoeostasis and metabolism. PIN8 co-localizes with PIN5 to the endoplasmic reticulum (ER) where it acts as an auxin transporter. Genetic analyses reveal an antagonistic action of PIN5 and PIN8 in the regulation of intracellular auxin homoeostasis and gametophyte as well as sporophyte development. Our results reveal a role of the auxin transport in male gametophyte development in which the distinct actions of ER-localized PIN transporters regulate cellular auxin homoeostasis and maintain the auxin levels optimal for pollen development and pollen tube growth.
The Plant Cell | 2012
Ilkka Sairanen; Ondřej Novák; Aleš Pěnčík; Yoshihisa Ikeda; Brian Jones; Göran Sandberg; Karin Ljung
Plants adjust growth to suit opportunities and limitations in their environment. Sugars from photosynthesis, the hormone auxin, and members of the PHYTOCHROME INTERACTING FACTOR (PIF) family of proteins have all been shown individually to regulate growth. This work shows that sugars regulate auxin biosynthesis via PIF proteins, indicating that the three in fact act together in growth regulation. Plants are necessarily highly competitive and have finely tuned mechanisms to adjust growth and development in accordance with opportunities and limitations in their environment. Sugars from photosynthesis form an integral part of this growth control process, acting as both an energy source and as signaling molecules in areas targeted for growth. The plant hormone auxin similarly functions as a signaling molecule and a driver of growth and developmental processes. Here, we show that not only do the two act in concert but that auxin metabolism is itself regulated by the availability of free sugars. The regulation of the biosynthesis and degradation of the main auxin, indole-3-acetic acid (IAA), by sugars requires changes in the expression of multiple genes and metabolites linked to several IAA biosynthetic pathways. The induction also involves members of the recently described central regulator PHYTOCHROME-INTERACTING FACTOR transcription factor family. Linking these three known regulators of growth provides a model for the dynamic coordination of responses to a changing environment.
Talanta | 2009
Aleš Pěnčík; Jakub Rolčík; Ondřej Novák; Volker Magnus; Petr Barták; Roman Buchtík; Branka Salopek-Sondi; Miroslav Strnad
An analytical protocol for the isolation and quantification of indole-3-acetic acid (IAA) and its amino acid conjugates was developed. IAA is an important phytohormone and formation of its conjugates plays a crucial role in regulating IAA levels in plants. The developed protocol combines a highly specific immunoaffinity extraction with a sensitive and selective LC-MS/MS analysis. By using internal standards for each of the studied compounds, IAA and seven amino acid conjugates were analyzed in quantities of fresh plant material as low as 30 mg. In seeds of Helleborus niger, physiological levels of these compounds were found to range from 7.5 nmol g(-1) fresh weight (IAA) to 0.44 pmol g(-1) fresh weight (conjugate with Ala). To our knowledge, the identification of IAA conjugates with Gly, Phe and Val from higher plants is reported here for the first time.
Proceedings of the National Academy of Sciences of the United States of America | 2016
Nathan Mellor; Leah R. Band; Aleš Pěnčík; Ondřej Novák; Afaf Rashed; Tara J. Holman; Michael Wilson; Ute Voß; Anthony Bishopp; John R. King; Karin Ljung; Malcolm J. Bennett; Markus R. Owen
Significance Auxin is a key hormone regulating plant growth and development. We combine experiments and mathematical modeling to reveal how auxin levels are maintained via feedback regulation of genes encoding key metabolic enzymes. We describe how regulation of auxin oxidation via transcriptional control of Arabidopsis thaliana gene DIOXYGENASE FOR AUXIN OXIDATION 1 (AtDAO1) expression is important at low to normal auxin concentrations. In contrast, higher auxin levels lead to increased Gretchen Hagen3 expression and auxin conjugation. Integrating this understanding into a multicellular model of root auxin dynamics successfully predicts that the dao1-1 mutant has an auxin-dependent longer root hair phenotype. Our findings reveal the importance of auxin homeostasis to maintain this hormone at optimal levels for plant growth and development. The hormone auxin is a key regulator of plant growth and development, and great progress has been made understanding auxin transport and signaling. Here, we show that auxin metabolism and homeostasis are also regulated in a complex manner. The principal auxin degradation pathways in Arabidopsis include oxidation by Arabidopsis thaliana gene DIOXYGENASE FOR AUXIN OXIDATION 1/2 (AtDAO1/2) and conjugation by Gretchen Hagen3s (GH3s). Metabolic profiling of dao1-1 root tissues revealed a 50% decrease in the oxidation product 2-oxoindole-3-acetic acid (oxIAA) and increases in the conjugated forms indole-3-acetic acid aspartic acid (IAA-Asp) and indole-3-acetic acid glutamic acid (IAA-Glu) of 438- and 240-fold, respectively, whereas auxin remains close to the WT. By fitting parameter values to a mathematical model of these metabolic pathways, we show that, in addition to reduced oxidation, both auxin biosynthesis and conjugation are increased in dao1-1. Transcripts of AtDAO1 and GH3 genes increase in response to auxin over different timescales and concentration ranges. Including this regulation of AtDAO1 and GH3 in an extended model reveals that auxin oxidation is more important for auxin homoeostasis at lower hormone concentrations, whereas auxin conjugation is most significant at high auxin levels. Finally, embedding our homeostasis model in a multicellular simulation to assess the spatial effect of the dao1-1 mutant shows that auxin increases in outer root tissues in agreement with the dao1-1 mutant root hair phenotype. We conclude that auxin homeostasis is dependent on AtDAO1, acting in concert with GH3, to maintain auxin at optimal levels for plant growth and development.
Proceedings of the National Academy of Sciences of the United States of America | 2016
Silvana Porco; Aleš Pěnčík; Afaf Rashed; Ute Voß; Rubén Casanova-Sáez; Anthony Bishopp; Agata Golebiowska; Rahul Bhosale; Ranjan Swarup; Kamal Swarup; Pavlína Peňáková; Ondřej Novák; Paul E. Staswick; Peter Hedden; Andrew Phillips; Kris Vissenberg; Malcolm J. Bennett; Karin Ljung
Significance Understanding how hormones like auxin control plant growth and development has fascinated scientists since Darwin. The past two decades have seen breakthroughs in elucidating the molecular basis of auxin transport, perception, and response, but little is known about how auxin is metabolized or its homeostasis is controlled. We report that the DIOXYGENASE FOR AUXIN OXIDATION 1 (AtDAO1) enzyme represents the major pathway for auxin oxidation in Arabidopsis. Disrupting AtDAO1 function elevates levels of auxin conjugates between ∼50- and 280-fold, but auxin levels remain close to the WT, helping explain why mutant phenotypes are relatively weak. We conclude that AtDAO1 and auxin conjugation pathways play highly redundant roles and reveal a level of regulation of auxin abundance in plants. Auxin represents a key signal in plants, regulating almost every aspect of their growth and development. Major breakthroughs have been made dissecting the molecular basis of auxin transport, perception, and response. In contrast, how plants control the metabolism and homeostasis of the major form of auxin in plants, indole-3-acetic acid (IAA), remains unclear. In this paper, we initially describe the function of the Arabidopsis thaliana gene DIOXYGENASE FOR AUXIN OXIDATION 1 (AtDAO1). Transcriptional and translational reporter lines revealed that AtDAO1 encodes a highly root-expressed, cytoplasmically localized IAA oxidase. Stable isotope-labeled IAA feeding studies of loss and gain of function AtDAO1 lines showed that this oxidase represents the major regulator of auxin degradation to 2-oxoindole-3-acetic acid (oxIAA) in Arabidopsis. Surprisingly, AtDAO1 loss and gain of function lines exhibited relatively subtle auxin-related phenotypes, such as altered root hair length. Metabolite profiling of mutant lines revealed that disrupting AtDAO1 regulation resulted in major changes in steady-state levels of oxIAA and IAA conjugates but not IAA. Hence, IAA conjugation and catabolism seem to regulate auxin levels in Arabidopsis in a highly redundant manner. We observed that transcripts of AtDOA1 IAA oxidase and GH3 IAA-conjugating enzymes are auxin-inducible, providing a molecular basis for their observed functional redundancy. We conclude that the AtDAO1 gene plays a key role regulating auxin homeostasis in Arabidopsis, acting in concert with GH3 genes, to maintain auxin concentration at optimal levels for plant growth and development.
PLOS Genetics | 2014
Ruixi Li; Jieru Li; Shibai Li; Genji Qin; Ondřej Novák; Aleš Pěnčík; Karin Ljung; Takashi Aoyama; Jingjing Liu; Angus S. Murphy; Hongya Gu; Tomohiko Tsuge; Li-Jia Qu
Plant architecture is one of the key factors that affect plant survival and productivity. Plant body structure is established through the iterative initiation and outgrowth of lateral organs, which are derived from the shoot apical meristem and root apical meristem, after embryogenesis. Here we report that ADP1, a putative MATE (multidrug and toxic compound extrusion) transporter, plays an essential role in regulating lateral organ outgrowth, and thus in maintaining normal architecture of Arabidopsis. Elevated expression levels of ADP1 resulted in accelerated plant growth rate, and increased the numbers of axillary branches and flowers. Our molecular and genetic evidence demonstrated that the phenotypes of plants over-expressing ADP1 were caused by reduction of local auxin levels in the meristematic regions. We further discovered that this reduction was probably due to decreased levels of auxin biosynthesis in the local meristematic regions based on the measured reduction in IAA levels and the gene expression data. Simultaneous inactivation of ADP1 and its three closest homologs led to growth retardation, relative reduction of lateral organ number and slightly elevated auxin level. Our results indicated that ADP1-mediated regulation of the local auxin level in meristematic regions is an essential determinant for plant architecture maintenance by restraining the outgrowth of lateral organs.
Plant Physiology | 2016
Hanaé Roman; Tiffanie Girault; François Barbier; Thomas Péron; Nathalie Brouard; Aleš Pěnčík; Ondřej Novák; Alain Vian; Soulaiman Sakr; Jérémy Lothier; José Le Gourrierec; Nathalie Leduc
Light perception by buds triggers a rapid cytokinin signal that controls major downstream regulators, including sugars, auxin, and strigolactones, of bud outgrowth. Bud outgrowth is controlled by environmental and endogenous factors. Through the use of the photosynthesis inhibitor norflurazon and of masking experiments, evidence is given here that light acts mainly as a morphogenic signal in the triggering of bud outgrowth and that initial steps in the light signaling pathway involve cytokinins (CKs). Indeed, in rose (Rosa hybrida), inhibition of bud outgrowth by darkness is suppressed solely by the application of CKs. In contrast, application of sugars has a limited effect. Exposure of plants to white light (WL) induces a rapid (after 3–6 h of WL exposure) up-regulation of CK synthesis (RhIPT3 and RhIPT5), of CK activation (RhLOG8), and of CK putative transporter RhPUP5 genes and to the repression of the CK degradation RhCKX1 gene in the node. This leads to the accumulation of CKs in the node within 6 h and in the bud at 24 h and to the triggering of bud outgrowth. Molecular analysis of genes involved in major mechanisms of bud outgrowth (strigolactone signaling [RwMAX2], metabolism and transport of auxin [RhPIN1, RhYUC1, and RhTAR1], regulation of sugar sink strength [RhVI, RhSUSY, RhSUC2, and RhSWEET10], and cell division and expansion [RhEXP and RhPCNA]) reveal that, when supplied in darkness, CKs up-regulate their expression as rapidly and as intensely as WL. Additionally, up-regulation of CKs by WL promotes xylem flux toward the bud, as evidenced by Methylene Blue accumulation in the bud after CK treatment in the dark. Altogether, these results suggest that CKs are initial components of the light signaling pathway that controls the initiation of bud outgrowth.
Journal of Plant Growth Regulation | 2012
Ana Brcko; Aleš Pěnčík; Volker Magnus; Tatjana Prebeg; Selma Mlinarić; Jasenka Antunović; Hrvoje Lepeduš; Vera Cesar; Miroslav Strnad; Jakub Rolčík; Branka Salopek-Sondi
The reproductive development of the Christmas rose (Helleborus niger L.) is characterized by an uncommon feature in the world of flowering plants: after fertilization the white perianth becomes green and photosynthetically active and persists during fruit development. In the flowers in which fertilization was prevented by emasculation (unfertilized) or entire reproductive organs were removed (depistillated), the elongation of the peduncle was reduced by 20–30%, and vascular development, particularly lignin deposition in sclerenchyma, was arrested. Chlorophyll accumulation in sepals and their photosynthetic efficacy were up to 80% lower in comparison to fertilized flowers. Endogenous auxins were investigated in floral and fruit tissues and their potential roles in these processes are discussed. Analytical data of free indole-3-acetic acid, indole-3-ethanol (IEt), and seven amino acid conjugates were afforded by LC-MS/MS in floral tissues of fertilized as well as unfertilized and depistillated flowers. Among amino acid conjugates, novel ones with Val, Gly, and Phe were identified and quantified in the anthers, and in the fruit during development. Reproductive organs before fertilization followed by developing fruit at post-anthesis were the main source of auxin. Tissues of unfertilized and depistillated flowers accumulated significantly lower levels of auxin. Upon depistillation, auxin content in the peduncle and sepal was decreased to 4 and 45%, respectively, in comparison to fruit-bearing flowers. This study suggests that auxin arising in developing fruit may participate, in part, in the coordination of the Christmas rose peduncle elongation and its vascular development.
PLOS ONE | 2015
Jan F. Humplík; Véronique Bergougnoux; Michaela Jandová; Jan Šimura; Aleš Pěnčík; Ondřej Tomanec; Jakub Rolčík; Ondřej Novák; Martin Fellner
Dark-induced growth (skotomorphogenesis) is primarily characterized by rapid elongation of the hypocotyl. We have studied the role of abscisic acid (ABA) during the development of young tomato (Solanum lycopersicum L.) seedlings. We observed that ABA deficiency caused a reduction in hypocotyl growth at the level of cell elongation and that the growth in ABA-deficient plants could be improved by treatment with exogenous ABA, through which the plants show a concentration dependent response. In addition, ABA accumulated in dark-grown tomato seedlings that grew rapidly, whereas seedlings grown under blue light exhibited low growth rates and accumulated less ABA. We demonstrated that ABA promotes DNA endoreduplication by enhancing the expression of the genes encoding inhibitors of cyclin-dependent kinases SlKRP1 and SlKRP3 and by reducing cytokinin levels. These data were supported by the expression analysis of the genes which encode enzymes involved in ABA and CK metabolism. Our results show that ABA is essential for the process of hypocotyl elongation and that appropriate control of the endogenous level of ABA is required in order to drive the growth of etiolated seedlings.