Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Aleš Štrancar is active.

Publication


Featured researches published by Aleš Štrancar.


Analytical Chemistry | 1996

Application of Compact Porous Disks for Fast Separations of Biopolymers and In-Process Control in Biotechnology

Aleš Štrancar; Primoz Koselj; Horst Schwinn; Djuro Josic

Production and downstream processing in biotechnology requires fast and accurate control of each step in the process. Improved techniques which can be validated are required in order to meet these demands. For these purposes, chromatographic units containing compact porous disks for fast separation of biopolymers were developed and investigated with regard to their performance and speed. The problems that have, in the past, arisen from the use of wide and flat separation units, such as membranes and disks, have chiefly been those of sample distribution and large void volumes before and behind the unit. Improvements in the construction of the cartridge have led to better performance of the compact porous disks and faster separation. Using these disks, three calibration standard proteins could be separated within less than 1 min by an anion-exchange, cation-exchange, and hydrophobic interaction mode. Such units can be used for in-process control in production and downstream processing of biopolymers, as was shown in experiments involving the purification of α(1)-antitrypsin and clotting factor IX and the immobilization of enzyme glucose oxidase on an epoxy-activated compact porous disk.


Advances in Biochemical Engineering \/ Biotechnology | 2002

Short monolithic columns as stationary phases for biochromatography.

Aleš Štrancar; Aleš Podgornik; Miloš Barut; Roman Necina

Monolithic supports represent a novel type of stationary phases for liquid and gas chromatography, for capillary electrochromatography, and as supports for bioconversion and solid phase synthesis. As opposed to individual particles packed into chromatographic columns, monolithic supports are cast as continuous homogeneous phases. They represent an approach that provides high rates of mass transfer at lower pressure drops as well as high efficiencies even at elevated flow rates. Therefore, much faster separations are possible and the productivity of chromatographic processes can be increased by at least one order of magnitude as compared to traditional chromatographic columns packed with porous particles. Besides the speed, the nature of the pores allows easy access even in the case of large molecules, which make monolithic supports a method of choice for the separation of nanoparticles like pDNA and viruses. Finally, for the optimal purification of larger biomolecules, the chromatographic column needs to be short. This enhances the speed of the separation process and reduces backpressure, unspecific binding, product degradation and minor changes in the structure of the biomolecule, without sacrificing resolution. Short Monolithic Columns (SMC) were engineered to combine both features and have the potential of becoming the method of choice for the purification of larger biomolecules and nanopartides on the semi-preparative scale.


Journal of Chromatography A | 1998

Use of compact, porous units with immobilized ligands with high molecular masses in affinity chromatography and enzymatic conversion of substrates with high and low molecular masses

Djuro Josic; Horst Schwinn; Aleš Štrancar; Aleš Podgornik; Miloš Barut; Yow-Pin Lim; Martina Vodopivec

Different ligands with high molecular masses are immobilized on compact, porous separation units and used for affinity chromatography. In subsequent experiments different enzymes are immobilized and used for converting substrates with low and high molecular masses. Disk or tube with immobilized concanavalin A (ConA) are used as model systems for lectin affinity chromatography. The enzyme glucose oxidase is used as a standard protein to test the ConA units. Subsequently glycoproteins from plasma membranes of rat liver are separated, using units with immobilized ConA. The enzyme dipeptidyl peptidase i.v., which is used as a model protein in the experiments, is enriched about 40-fold in a single step, with a yield of over 90%. The results are only slightly better than those obtained with ConA when it is immobilized on bulk supports. The important improvement lies in the reduction of separation time to only 1 h. Experiments concerning the isolation of monoclonal antibodies against clotting factor VIII (FVIII) are carried out on disks, combining anion-exchange chromatography and protein A affinity chromatography as a model for multidimensional chromatography. Both IgG (bound to the protein A disk) and accompanying proteins (bound to the anion-exchange disk) from mouse ascites fluid are retarded and eluted separately. With the immobilized enzymes invertase and glucose oxidase (GOX) the corresponding substrates with low molecular masses, saccharose and glucose, are converted. It is shown that the amount of immobilized enzyme and the concentration of the substrate are responsible for the extent of the conversion, whereas the flow-rates used in the experiments have no effect at all. The influence of immobilization chemistry was investigated with GOX. Indirect immobilization with ConA as spacer proved to be the best alternative. With trypsin, immobilized on a disk, substrates with high molecular masses are digested in flow-through. For optimal digestion the proteins have to be denatured in the buffer for sodium dodecyl sulfate-polyacrlyamide gel electrophoresis prior to application. In contrast to the conversion of substrates with low molecular masses, flow-rates play an important part in conversion of substrates with high molecular masses. With lower flow-rates a higher degree of digestion is achieved.


Hrc-journal of High Resolution Chromatography | 2000

Dynamic capacity studies of CIM (Convective Interaction Media)® monolithic columns

Tine Koloini; Aleš Podgornik; Aleš Štrancar

The characterization of CIM® DEAE monolithic columns in terms of dynamic binding capacity is presented in this paper. Breakthrough experiments were performed for capacity determination. Bovine serum albumin (BSA) was used as a model protein. It is shown that CIM® monolithic columns have good batch-to-batch reproducibility as well as long-term stability. The experiments performed under different linear velocities demonstrated that the dynamic capacity is unaffected at least up to a linear velocity of 2450 cm/h. Furthermore, the breakthrough curve slope is constant, indicating that the capacity would remain constant at even higher linear velocities. The adsorption isotherm of BSA dissolved in 20 mM Tris-HCl buffer shows a constant capacity of around 30 mg/mL of support down to a concentration of 20 μg/mL. The capacity is substantially influenced by the ionic strength; however, 20% of the maximal capacity is still preserved at 0.3 M NaCl.


Journal of Chromatography A | 1999

Isocratic separations on thin glycidyl methacrylate–ethylenedimethacrylate monoliths

Aleš Podgornik; Miloš Barut; Janez Jančar; Aleš Štrancar

In this work, the isocratic separation of oligonucleotides in the ion-exchange mode on thin glycidylmethacrylate–ethylenedimethacrylate (GMA–EDMA) monoliths in the form of commercially available CIM (Convective Interaction Media) disks is presented. It was found that isocratic separation occurs even on monoliths with a thickness of only 0.75 mm. Peak broadening of the components retained on the monolith is proportional to the retention time, which in turn is proportional to the thickness of the monolith. Peak height is inversely proportional to the retention time. From these results it can be concluded that the mechanism of the separation on such monoliths is similar to that in HPLC columns filled with conventional porous particles. The height equivalent to a theoretical plate of GMA–EDMA monoliths is calculated to be 18.0 μm. The capacity factor k′ depends, exponentially, on the salt concentration. The Z factor calculated from fitted equations increases linearly with the oligonucleotide’s length. It was also found that the difference between peak retention volume slightly increases with the flow-rate when the experiments are performed in the range from 0.5 to 7 ml/min. From the similarities between the isocratic separations on conventional columns and on thin GMA–EDMA monoliths it is reasonable to believe that separation based on a multiple adsorption/desorption process also occurs in thin monoliths.


Journal of Chromatography A | 1995

High-performance liquid chromatographic analysis of mevinolin as mevinolinic acid in fermentation broths☆

Jožica Friedrich; Mateja Žužek; Mojca Benčina; Aleksa Cimerman; Aleš Štrancar; Ivan Radež

Abstract High-performance liquid chromatographic analysis of mevinolin in fermentation broth was initially performed after addition of acid and extraction with methanol using a mobile phase at pH 3.0. Under such conditions mevinolin was present in three different forms: as a lactone, as the corresponding s-hydroxy acid (mevinolinic acid) and as its methyl ester. To achieve accurate and reproducible results the method was modified such that only one form was present: mevinolinic acid. The fermentation broth samples were adjusted to pH 7.7 before the extraction with methanol, and the pH of the mobile phase was adjusted to 7.7 as well. For the separation a 250 × 4 mm I.D. column, termostated at 40°C, packed with Spherisorb ODS 2 of 5 μm particle size was used. Under these conditions mevinolin was detected at 237 nm as a single peak of a s-hydroxy acid, which has the lowest retention time of all three forms.


Journal of Virological Methods | 2003

Application of short monolithic columns for improved detection of viruses.

Karmen Branović; Dubravko Forcic; Jelena Ivancic; Aleš Štrancar; Miloš Barut; Tanja Košutić-Gulija; Renata Zgorelec; Renata Mazuran

Monolithic chromatography media represent a novel generation of stationary phases introduced in the last 10-15 years providing a chromatography matrix with enhanced mass transfer and hydrodynamic properties. These features allow for an efficient and fast separation of especially large biomolecules like e.g., DNA and viruses. In this study, the enrichment of virus RNA on short monolithic columns prior to molecular detection of viruses is described. Measles and mumps viruses were chosen as model viruses. The results show that it is possible to bind viral RNA on monoliths and concentrate viral nucleic acids from a fairly dilute sample. Consequently, a potential application of short monolithic columns is the concentration of virus RNA to improve the sensitivity and selectivity of viral detection with the possibility of isolating viral RNA from cell-free biological fluids.


Vaccine | 2010

Preparation of pharmaceutical-grade plasmid DNA using methacrylate monolithic columns

Franc Smrekar; Aleš Podgornik; Mateja Ciringer; Sandra Kontrec; Peter Raspor; Aleš Štrancar; Matjaž Peterka

Plasmid DNA (pDNA) used in vaccination and gene therapy has to be highly pure and homogenous, which point out necessity to develop efficient, reproducible and scalable downstream process. Convective Interaction Media (CIM) monolithic chromatographic supports being designed for purification of large molecules and nanoparticles seem to be a matrix of choice for pDNA purification. In present work we describe a pDNA purification process designed on two different CIM monolithic columns, based on anion-exchange (AEX) chromatography and hydrophobic interaction chromatography (HIC) chemistry. HIC monolith enabled separation of supercoiled (sc) pDNA from open circular (oc) pDNA, genomic DNA (gDNA) and endotoxins regardless to flow rates in the range at least up to 380cm/h. Dynamic binding capacity of new HIC monolith is up to 4mg of pDNA per milliliter of support. Combination of both chromatographic steps using optimized CaCl(2) precipitation enabled production of pure pDNA, satisfying all regulatory requirements. Process was found to be reproducible, scalable, and exhibits high productivity. In addition, in-line monitoring of pDNA purification process is shown, using CIM DEAE disk monolithic columns.


Journal of Chromatography A | 2008

Characterisation of grafted weak anion-exchange methacrylate monoliths

Vida Frankovič; Aleš Podgornik; Nika Lendero Krajnc; Franc Smrekar; Peter Krajnc; Aleš Štrancar

A weak ion-exchange grafted methacrylate monolith was prepared by grafting a methacrylate monolith with glycidyl methacrylate and subsequently modifying the epoxy groups with diethylamine. The thickness of the grafted layer was determined by measuring permeability and found to be approximately 90nm. The effects of different buffer solutions on the pressure drop were examined and indicated the influence of pH on the permeability of the grafted monolith. Protein separation and binding capacity (BC) were found to be flow-unaffected up to a linear velocity of 280cm/h. A comparison of the BC for the non-grafted and grafted monolith was performed using beta-lactoglobulin, bovine serum albumin (BSA), thyroglobulin, and plasmid DNA (pDNA). It was found that the grafted monolith exhibited 2- to 3.5-fold higher capacities (as compared to non-grafted monoliths) in all cases reaching values of 105, 80, 71, and 17mg/ml, respectively. It was determined that the maximum pDNA capacity was reached using 0.1M NaCl in the loading buffer. Recovery was comparable and no degradation of the supercoiled pDNA form was detected. Protein z-factors were equal for the non-grafted and grafted monolith indicating that the same number of binding sites are available although elution from the grafted monolith occurred at higher ionic strengths. The grafted monolith exhibited lower efficiency than the non-grafted ones. However, the baseline separation of pDNA from RNA and other impurities was achieved from a real sample.


Journal of Separation Science | 2008

Methacrylate‐based short monolithic columns: Enabling tools for rapid and efficient analyses of biomolecules and nanoparticles

Miloš Barut; Aleš Podgornik; Lidija Urbas; Boštjan Gabor; Peter Brne; Jana Vidič; Sašo Plevčak; Aleš Štrancar

This review describes the novel chromatography stationary phase--a porous monolithic methacrylate-based polymer--in terms of the design of the columns and some of the features that make these columns attractive for the purification of large biomolecules. We first start with a brief summary of the characteristics of these large molecules (more precisely large proteins like immunoglobulins G and M, plasmid deoxyribonucleic acid (DNA), and viral particles), and a list of some of the problems that were encountered during the development of efficient purification processes. We then briefly describe the structure of the methacrylate-based monolith and emphasize the features which make them more than suitable for dealing with large entities. The highly efficient structure on a small scale can be transferred to a large scale without the need of making column modifications, and the various approaches of how this is accomplished are briefly presented in this paper. This is followed by presenting some of the examples from the bioprocess development schemes, where the implementation of the methacrylate-based monolithic columns has resulted in a very efficient and productive process. Following this, we move back to the analytical scale and demonstrate the efficiency of the monolithic column--where the mass transfer between the stationary and mobile phase is greatly enhanced--for the in-process and final control of the new therapeutics. The combination of an efficient structure and the appropriate hardware results in separations of proteins with residence time less than 0.1 s.

Collaboration


Dive into the Aleš Štrancar's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Horst Schwinn

Free University of Berlin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge