Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alesia A. Tietze is active.

Publication


Featured researches published by Alesia A. Tietze.


ChemPhysChem | 2013

On the nature of interactions between ionic liquids and small amino-acid-based biomolecules.

Alesia A. Tietze; Frank Bordusa; Ralf Giernoth; Diana Imhof; Thomas Lenzer; Astrid Maaß; Carmen Mrestani-Klaus; Ines Neundorf; Kawon Oum; Dirk Reith; Annegret Stark

During the last decade, ionic liquids (ILs) have revealed promising properties and applications in many research fields, including biotechnology and biological sciences. The focus of this contribution is to give a critical review of the phenomena observed and current knowledge of the interactions occurring on a molecular basis. As opposed to the huge advances made in understanding the properties of proteins in ILs, complementary investigations dealing with interactions between ILs and peptides or oligopeptides are underrepresented and are mostly only of phenomenological nature. However, the field has received more attention in the last few years. This Review features a meta-analysis of the available data and findings and should, therefore, provide a basis for a scientifically profound understanding of the nature and mechanisms of interactions between ILs and structured or nonstructured peptides. Fundamental aspects of the interactions between different peptides/oligopeptides and ILs are complemented by sections on the experimental (spectroscopy, structural biology) and theoretical (computational chemistry) possibilities to explain the phenomena reported so far in the literature. In effect, this should lead to the development of novel applications and support the understanding of IL-solute interactions in general.


Molecules | 2012

Ionic Liquid Applications in Peptide Chemistry: Synthesis, Purification and Analytical Characterization Processes

Alesia A. Tietze; Pascal Heimer; Annegret Stark; Diana Imhof

This review aims to provide a comprehensive overview of the recent advances made in the field of ionic liquids in peptide chemistry and peptide analytics.


Angewandte Chemie | 2012

Structurally Diverse μ‐Conotoxin PIIIA Isomers Block Sodium Channel NaV1.4

Alesia A. Tietze; Daniel Tietze; Oliver Ohlenschläger; Enrico Leipold; Florian Ullrich; Toni Kühl; André Mischo; Gerd Buntkowsky; Matthias Görlach; Stefan H. Heinemann; Diana Imhof

Certain VGSC subtypes (NaV1.3, 1.7, 1.8, and 1.9) are expressed in the peripheral nervous system and mediate the transmission of signals leading to the sensation of different kinds of pain, such as nociception (NaV1.8), acute inflammatory (NaV1.7), and neuropathic (NaV1.3) pain. [2] Therefore, VGSCs are potential targets for novel analgesics, ideally those with strong channel specificity. Among sodium channel antagonists, m- and mO-conotoxins from the venoms of marine cone snails have attracted considerable attention because of their analgesic potency. [2a, 3] m-Conotoxins are 14to 26-mer peptides with six cysteine residues (Supporting Information, Table S1). [4] They inhibit muscle and/or neuronal VGSCs by occluding the ion channel pore. [5] A specific cysteine framework, that is, CCXnCXnCXnCC, confers conformational restriction to their three-dimensional structure upon formation of three disulfide bonds. It is generally accepted that the native fold of the toxins carries the disulfide connectivities Cys1–Cys4, Cys2–Cys5, and Cys3–Cys6 (numbered in the order of occurrence in the amino acid sequence). [3, 5b] However, three-dimensional structures are available only for a limited subset of m-conotoxins, that is, PIIIA, [6]


ChemBioChem | 2014

Application of Room‐Temperature Aprotic and Protic Ionic Liquids for Oxidative Folding of Cysteine‐Rich Peptides

Pascal Heimer; Alesia A. Tietze; Miriam Böhm; Ralf Giernoth; Andrea Kuchenbuch; Annegret Stark; Enrico Leipold; Stefan H. Heinemann; Christian Kandt; Diana Imhof

The oxidation of the conotoxin μ‐SIIIA in different ionic liquids was investigated, and the results were compared with those obtained in [C2mim][OAc]. Conversion of the reduced precursor into the oxidized product was observed in the protic ILs methyl‐ and ethylammonium formate (MAF and EAf, respectively), whereas choline dihydrogenphosphate and Ammoeng 110 failed to yield folded peptide. However, the quality and yield of the peptide obtained in MAF and EAF were lower than in the case of the product from [C2mim][OAc]. Reaction conditions (temperature, water content) also had an impact on peptide conversion. A closer look at the activities of μ‐SIIIA versions derived from an up‐scaled synthesis in [C2mim][OAc] revealed a significant loss of the effect on ion channel NaV1.4 relative to the buffer‐oxidized peptide, whereas digestion of either μ‐SIIIA product by trypsin was unaffected. This was attributed to adherence of ions from the IL to the peptide, because the disulfide connectivity is basically the same for the differentially oxidized μ‐SIIIA versions.


Biochemical and Biophysical Research Communications | 2017

Subtype-specific block of voltage-gated K(+) channels by μ-conopeptides.

Enrico Leipold; Florian Ullrich; Markus Thiele; Alesia A. Tietze; Heinrich Terlau; Diana Imhof; Stefan H. Heinemann

The neurotoxic cone snail peptide μ-GIIIA specifically blocks skeletal muscle voltage-gated sodium (NaV1.4) channels. The related conopeptides μ-PIIIA and μ-SIIIA, however, exhibit a wider activity spectrum by also inhibiting the neuronal NaV channels NaV1.2 and NaV1.7. Here we demonstrate that those μ-conopeptides with a broader target range also antagonize select subtypes of voltage-gated potassium channels of the KV1 family: μ-PIIIA and μ-SIIIA inhibited KV1.1 and KV1.6 channels in the nanomolar range, while being inactive on subtypes KV1.2-1.5 and KV2.1. Construction and electrophysiological evaluation of chimeras between KV1.5 and KV1.6 revealed that these toxins block KV channels involving their pore regions; the subtype specificity is determined in part by the sequence close to the selectivity filter but predominantly by the so-called turret domain, i.e. the extracellular loop connecting the pore with transmembrane segment S5. Conopeptides μ-SIIIA and μ-PIIIA, thus, are not specific for NaV channels, and the known structure of some KV channel subtypes may provide access to structural insight into the molecular interaction between μ-conopeptides and their target channels.


Biochimica et Biophysica Acta | 2016

Molecular interaction of δ-conopeptide EVIA with voltage-gated Na(+) channels.

Daniel Tietze; Enrico Leipold; Pascal Heimer; Miriam Böhm; Wadim Winschel; Diana Imhof; Stefan H. Heinemann; Alesia A. Tietze

Abstract Background For a large number of conopeptides basic knowledge related to structure-activity relationships is unavailable although such information is indispensable with respect to drug development and their use as drug leads. Methods A combined experimental and theoretical approach employing electrophysiology and molecular modeling was applied for identifying the conopeptide δ-EVIA binding site at voltage-gated Na+ channels and to gain insight into the toxins mode of action. Results Conopeptide δ-EVIA was synthesized and its structure was re-determined by NMR spectroscopy for molecular docking studies. Molecular docking and molecular dynamics simulation studies were performed involving the domain IV voltage sensor in a resting conformation and part of the domain I S5 transmembrane segment. Molecular modeling was stimulated by functional studies, which demonstrated the importance of domains I and IV of the neuronal NaV1.7 channel for toxin action. Conclusions δ-EVIA shares its binding epitope with other voltage-sensor toxins, such as the conotoxin δ-SVIE and various scorpion α-toxins. In contrast to previous in silico toxin binding studies, we present here in silico binding studies of a voltage-sensor toxin including the entire toxin binding site comprising the resting domain IV voltage sensor and S5 of domain I. General significance The prototypical voltage-sensor toxin δ-EVIA is suited for the elucidation of its binding epitope; in-depth analysis of its interaction with the channel target yields information on the mode of action and might also help to unravel the mechanism of voltage-dependent channel gating and coupling of activation and inactivation.


Analytical Chemistry | 2018

Conformational μ-Conotoxin PIIIA Isomers Revisited: Impact of Cysteine Pairing on Disulfide-Bond Assignment and Structure Elucidation

Pascal Heimer; Alesia A. Tietze; Charlotte A. Bäuml; Anja Resemann; Franz Josef Mayer; Detlev Suckau; Oliver Ohlenschläger; Daniel Tietze; Diana Imhof

Peptides and proteins carrying high numbers of cysteines can adopt various 3D structures depending on their disulfide connectivities. The unambiguous verification of such conformational isomers with more than two disulfide bonds is extremely challenging, and experimental strategies for their unequivocal structural analysis are largely lacking. We synthesized all 15 possible isomers of the 22mer conopeptide μ-PIIIA and applied 2D NMR spectroscopy and MS/MS for the elucidation of its structure. This study provides intriguing insights in how the disulfide connectivity alters the global fold of a toxin. We also show that analysis procedures involving comprehensive combinations of conventional methods are required for the unambiguous assignment of disulfides in cysteine-rich peptides and proteins and that standard compounds are crucially needed for the structural analysis of such complex molecules.


Journal of Organic Chemistry | 2017

Reactions of Sulfur-Containing Organic Compounds and Peptides in 1-Ethyl-3-methyl-imidazolium Acetate

Andreas C. Baumruck; Daniel Tietze; Annegret Stark; Alesia A. Tietze

The neat ionic liquid (IL) [C2mim][OAc] is not just capable of dissolving thiol- and disulfide-containing compounds, but is able to chemically react with them without addition of any catalytic reagent. Through the analysis of four small organic molecules and a cysteine-containing peptide we could postulate a general reaction mechanism. Here, the imidazolium-carbenes preferentially react with the disulfide bond, but not thiol group. Moreover, the imidazole moiety was found to abstract the sulfur atom from the cysteine residue, providing an alternative way to transform Cys residues, which were artificially inserted into a peptide sequence in order to perform native chemical ligation (NCL) of two peptide fragments. Finally, the chemical reaction of [C2mim][OAc] with a cysteine-containing biomolecules can be tuned or even suppressed through the addition of at least 30% of water to the reaction mixture.


Chemistry: A European Journal | 2018

NiII Complex Formation and Protonation States at the Active Site of a Nickel Superoxide Dismutase-Derived Metallopeptide: Implications for the Mechanism of Superoxide Degradation

Daniel Tietze; Banabithi Koley Seth; Matthias Brauser; Alesia A. Tietze; Gerd Buntkowsky

A small, catalytically active metallopeptide (Nim6 SOD, m6 SOD=ACDLAC), which was derived from the nickel superoxide dismutase (NiSOD) active site was employed to study the mechanism of superoxide degradation, especially focusing on the protonation states of the NiII donor atoms, the proton source, and the role of the N-terminal proton(s). Therefore, the NiII -metallopeptide was studied at various pHs and temperatures using UV/Vis and NMR spectroscopy. These studies indicate a strong reduction of the pKa of the NiII -ligating donor atoms, resulting in a fully deprotonated NiII active-site environment. Furthermore, no titratable proton could be observed within a pH ranging from 6.5 to 10.5. This rules out a recently discussed adiabatic proton tunneling-like hydrogen-atom transfer process for the metallopeptides, not found in the native enzyme. Furthermore, variable-temperature 1 H NMR measurements uncovered an extended hydrogen-bond network within the NiII active site of the metallopeptide similar to the enzyme. With respect to the deprotonated NiII active site, the residual N-terminal proton, which is a prerequisite for catalytic activity, cannot act as proton source. Most likely, it stabilizes the NiII -coordinated substrate in an end-on fashion, thus allowing for an inner-sphere electron transfer. Lastly, and unlike the enzyme, the catalytic rate constant of superoxide degradation by the metallopeptides was determined to be strongly pH dependent, suggesting bulk water to be directly involved in proton donation, which in turn strongly suggests the N-terminal histidine to be the respective proton donor in the enzyme.


Journal of Molecular Liquids | 2014

Ionic liquids as reaction media for oxidative folding and native chemical ligation of cysteine-containing peptides

Miriam Böhm; Alesia A. Tietze; Pascal Heimer; Ming Chen; Diana Imhof

Collaboration


Dive into the Alesia A. Tietze's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Daniel Tietze

Technische Universität Darmstadt

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gerd Buntkowsky

Technische Universität Darmstadt

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge