Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alessandra Aloisi is active.

Publication


Featured researches published by Alessandra Aloisi.


Biosensors and Bioelectronics | 2013

Quartz crystal microbalance with dissipation (QCM-D) as tool to exploit antigen–antibody interactions in pancreatic ductal adenocarcinomadetection

Monica Bianco; Alessandra Aloisi; Valentina Arima; Michela Capello; Sammy Ferri-Borgogno; Francesco Novelli; Stefano Leporatti; Rosaria Rinaldi

Novel synthetic peptides represent smart molecules for antigen-antibody interactions in several bioanalytics applications, from purification to serum screening. Their immobilization onto a solid phase is considered a key point for sensitivity increasing. In this view, we exploited Quartz Crystal Microbalance with simultaneous frequency and dissipation monitoring (QCM-D) with a double aim, specifically, as investigative tool for spacers monolayer assembling and its functional evaluation, as well as high sensitive method for specific immunosorbent assays. The method was applied to pancreatic ductal adenocarcinoma (PDAC) detection by studying the interactions between synthetic phosphorylated and un-phosphorylated α-enolase peptides with sera of healthy and PDAC patients. The synthetic peptides were immobilized on the gold surface of the QCM-D sensor via a self-assembled alkanethiol monolayer. The presented experimental results can be applied to the development of surfaces less sensitive to non-specific interactions with the final target to suggest specific protocols for detecting PDAC markers with un-labeled biosensors.


PLOS ONE | 2013

Anti-Aggregating Effect of the Naturally Occurring Dipeptide Carnosine on Aβ1-42 Fibril Formation

Alessandra Aloisi; Amilcare Barca; Alessandro Romano; Sara Guerrieri; Carlo Storelli; Rosaria Rinaldi; Tiziano Verri

Carnosine is an endogenous dipeptide abundant in the central nervous system, where by acting as intracellular pH buffering molecule, Zn/Cu ion chelator, antioxidant and anti-crosslinking agent, it exerts a well-recognized multi-protective homeostatic function for neuronal and non-neuronal cells. Carnosine seems to counteract proteotoxicity and protein accumulation in neurodegenerative conditions, such as Alzheimer’s Disease (AD). However, its direct impact on the dynamics of AD-related fibril formation remains uninvestigated. We considered the effects of carnosine on the formation of fibrils/aggregates of the amyloidogenic peptide fragment Aβ1-42, a major hallmark of AD injury. Atomic force microscopy and thioflavin T assays showed inhibition of Aβ1-42 fibrillogenesis in vitro and differences in the aggregation state of Aβ1-42 small pre-fibrillar structures (monomers and small oligomers) in the presence of carnosine. in silico molecular docking supported the experimental data, calculating possible conformational carnosine/Aβ1-42 interactions. Overall, our results suggest an effective role of carnosine against Aβ1-42 aggregation.


Biochip Journal | 2016

Micro and nanotechnology for early diagnosis and detection of rheumatic diseases-molecular markers

Elisabetta Marulli; Alessandra Aloisi; Paolo Di Giuseppe; Rosaria Rinaldi

Cytokine proteins are known as biomarker molecules, characteristic of a disease or specific body condition. Monitoring of the cytokine pattern in body fluids contributes to the diagnosis of rheumatic diseases associated with rheumatoid factor. Here, the proinflammatory cytokine Tumor Necrosis Factor alpha (TNF-α) was chosen as the first target of interest. We report on the development of a fast sandwich immunosorbent assay: anti-TNF-α antibody (Ab) immobilization on a pre-activated 3D micro-structured glass slide, coupled with direct fluorescence readout method. Two differently functionalized glass - Ab-immobilization substrates - were compared: O2 PLASMA/APTES activated glass - having a two-dimensional structure-, and the polystyrene (PS) beads coated glass, -having a 3D structure-. The 3D structured substrate was aimed to increase antibody anchorage sites. Then, the optimization of buffer media was carefully investigated with respect to non-specific protein binding. As a first step towards real sample analysis, a proof of principle of on/off cytokine detection has been analyzed in the presence of human serum. High-density one-step immobilization of anti-TNF-α antibody onto nanobead-coated glass slide chip has been demonstrated to be a promising device for application in in vitro diagnostic and profiling of cytokines with potential application toward personalized therapeutic interventions.


ACS Applied Materials & Interfaces | 2018

Maghemite Nanoparticles with Enhanced Magnetic Properties: One-Pot Preparation and Ultrastable Dextran Shell

Riccardo Di Corato; Alessandra Aloisi; Simona Rella; Jean-Marc Greneche; Giammarino Pugliese; Teresa Pellegrino; Cosimino Malitesta; Rosaria Rinaldi

In the field of nanomedicine, superparamagnetic nanoparticles are one of the most studied nanomaterials for theranostics. In this study, a one-pot synthesis of magnetic nanoparticles is presented, with an increased control on particle size from 10 to 40 nm. Monitoring of vacuum level is introduced here as a crucial parameter for achieving a fine particle morphology. The magnetic properties of these nanoparticles are highly affected by disorders or mismatches in crystal structure. A prolonged oxidation step is applied to the obtained nanoparticles to transform the magnetic phases into a pure maghemite one, confirmed by high-resolution X-ray photoelectron spectroscopy analysis, by Mössbauer spectrometry and, indirectly, by increased performances in magnetization curves and in relaxation times. Afterward, the attained nanoparticles are transferred into water by a nonderivatized dextran coating. Thermogravimetric analysis confirms that polysaccharide molecules replace oleic acid on the surface by stabilizing the particles in the aqueous phase and culture media. Preliminary in vitro test reveals that the dextran-coated nanoparticles are not passively internalized from the cells. As a proof of concept, a secondary layer of chitosan assures a positive charge to the nanoparticle surface, thus enhancing cellular internalization.


Scientific Reports | 2017

Inhibin-A and Decorin Secreted by Human Adult Renal Stem/Progenitor Cells Through the TLR2 Engagement Induce Renal Tubular Cell Regeneration

Fabio Sallustio; Claudia Curci; Alessandra Aloisi; Chiara Cristina Toma; Elisabetta Marulli; Grazia Serino; Sharon Natasha Cox; Giuseppe De Palma; Alessandra Stasi; Chiara Divella; Rosaria Rinaldi; Francesco Paolo Schena

Acute kidney injury (AKI) is a public health problem worldwide. Several therapeutic strategies have been made to accelerate recovery and improve renal survival. Recent studies have shown that human adult renal progenitor cells (ARPCs) participate in kidney repair processes, and may be used as a possible treatment to promote regeneration in acute kidney injury. Here, we show that human tubular ARPCs (tARPCs) protect physically injured or chemically damaged renal proximal tubular epithelial cells (RPTECs) by preventing cisplatin-induced apoptosis and enhancing proliferation of survived cells. tARPCs without toll-like receptor 2 (TLR2) expression or TLR2 blocking completely abrogated this regenerative effect. Only tARPCs, and not glomerular ARPCs, were able to induce tubular cell regeneration process and it occurred only after damage detection. Moreover, we have found that ARPCs secreted inhibin-A and decorin following the RPTEC damage and that these secreted factors were directly involved in cell regeneration process. Polysaccharide synthetic vesicles containing these molecules were constructed and co-cultured with cisplatin damaged RPTECs. These synthetic vesicles were not only incorporated into the cells, but they were also able to induce a substantial increase in cell number and viability. The findings of this study increase the knowledge of renal repair processes and may be the first step in the development of new specific therapeutic strategies for renal repair.


Organic Sensors and Bioelectronics X | 2017

Microfluidics and BIO-encapsulation for drug- and cell-therapy

Alessandra Aloisi; Chiara Cristina Toma; R. Di Corato; R. Rinaldi

We present the construction and the application of biocompatible micro- and nano-structures that can be administered systemically and transport in a targeted and effective way drugs, small molecules, stem cells or immune system cells. These polymeric nano-systems represent a primary goal for the treatment of a wide family of neurological/systemic disorders, as well as tumors and/or acute injuries. As natural, biocompatible, biodegradable and non-immunogenic building blocks, alginate and chitosan are been currently exploited. Ionotropic pre-gelation of the alginate core, followed by chitosan polyelectrolyte complexation, allows to encapsulate selected active molecules by means of physical entrapment and electrostatic interactions within sub-micron sized hydrogel vesicles. Here we present a microfluidicassisted assembly method of nano- and micro-vesicles -under sterile, closed environment and gas exchange adjustable conditions, which is a critical issue, when the cargo to be uploaded is very sensitive. Polymer/polymer and polymer/drug mass ratio relationship are crucial in order to attain the optimum in terms of shuttle size and cargo concentration. By modulating polymer reticulation conditions, it become possible to control drug loading efficiency as well as drug delivery dynamics. Recent results on the application of these vesicles for the encapsulation and delivery of Inhibin-A and Decorin, proteins involved in acute kidney injury (AKI), for Renal tubular cell regeneration will be presented. Finally, the impact of these polysaccharide sub-micron vesicles on Human Immune cells and the metabolic and functional activity of cells embedded in the assembled vesicles will be presented and discussed.


Neuroscience Bulletin | 2018

Radio Electric Asymmetric Conveyer Technology Modulates Neuroinflammation in a Mouse Model of Neurodegeneration

Maria Antonietta Panaro; Alessandra Aloisi; Giuseppe Nicolardi; Dario Domenico Lofrumento; Francesco De Nuccio; Velia La Pesa; Antonia Cianciulli; Rosaria Rinaldi; Rosa Calvello; Vania Fontani; Salvatore Rinaldi

In this study, the effects of Radio Electric Asymmetric Conveyer (REAC), a non-invasive physical treatment, on neuroinflammatory responses in a mouse model of parkinsonism induced by intoxication with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), were investigated in vivo. We found that the REAC tissue optimization treatment specific for neuro-regenerative purposes (REAC TO-RGN-N) attenuated the inflammatory picture evoked by MPTP-induced nigro-striatal damage in mice, decreasing the levels of pro-inflammatory molecules and increasing anti-inflammatory mediators. Besides, there was a significant reduction of both astrocyte and microglial activation in MPTP-treated mice exposed to REAC TO-RGN-N. These results indicated that REAC TO-RGN-N treatment modulates the pro-inflammatory responses and reduces neuronal damage in MPTP-induced parkinsonism.


Biomacromolecules | 2018

Immune Profiling of Polysaccharide Submicron Vesicles

Chiara Cristina Toma; Alessandra Aloisi; Valentina Bordoni; Riccardo Di Corato; Martina Rauner; Gianaurelio Cuniberti; Lucia Gemma Delogu; Rosaria Rinaldi

Alginate (ALG) and chitosan (CS) have been extensively used for biomedical applications; however, data relative to immune responses exerted by them are scarce. We synthesized a submicron vesicle system (SV) displaying a CS shell over an ALG core. Intravenous injection of these promising carriers could be a possible route of delivery; therefore, we evaluated their impact on human peripheral blood mononuclear cells (PBMCs). By this ex vivo approach, we established how SV chemical-physical characteristics affected the immune cells in terms of cellular uptake, viability, and state of activation. By flow cytometry, we demonstrated that SVs were internalized by PBMCs with differential trends. No substantial necrotic and apoptotic signals were recorded, and SVs weakly affected activation status of PBMCs (concerning the markers CD69, CD25, CD80, and the cytokines TNF-α and IL-6), showing high immune biocompatibility and low immunomodulating properties. Our findings gain particular value toward the biomedical applications of SVs and make these polymer-based structures more attractive for translation into clinical uses.


Journal of Sensors | 2016

Microoxygraph Device for Biosensoristic Applications

Alessandra Aloisi; Elisabetta Tarentini; Alessandra Ferramosca; Vincenzo Zara; Rosaria Rinaldi

Oxygen consumption rate (OCR) is a significant parameter helpful to determine in vitro respiratory efficiency of living cells. Oxygen is an excellent oxidant and its electrocatalytic reduction on a noble metal allows accurately detecting it. By means of microfabrication technologies, handy, low-cost, and disposable chip can be attained, minimizing working volumes and improving sensitivity and response time. In this respect, here is presented a microoxygraph device (MOD), based on Clark’s electrode principle, displaying many advantageous features in comparison to other systems. This lab-on-chip platform is composed of a three-microelectrode detector equipped with a microgrooved electrochemical cell, sealed with a polymeric reaction chamber. Au working/counter electrodes and Ag/AgCl reference electrode were fabricated on a glass slide. A microchannel was realized by photoresist lift-off technique and a polydimethylsiloxane (PDMS) nanoporous film was integrated as oxygen permeable membrane (OPM) between the probe and the microreaction chamber. Electrochemical measurements showed good reproducibility and average response time, assessed by periodic injection and suction of a reducing agent. OCR measurements on 3T3 cells, subjected, in real time, to chemical stress on the respiratory chain, were able to show that this chip allows performing consistent metabolic analysis.


mediterranean microwave symposium | 2015

Modulation of pro-inflammatory response in a mouse model of Parkinson's disease by non-invasive physical approach

Maria Antonietta Panaro; Vito Carofiglio; Rosa Calvello; Alessandra Aloisi; Rosaria Rinaldi; Giuseppe Nicolardi; Dario Domenico Lofrumento; Francesco De Nuccio; Velia La Pesa; Vania Fontani; Salvatore Rinaldi

The aim of this study is to investigate the effect of a non-invasive physical treatment on activated microglia of a well-established mouse model of Parkinson disease (PD), based on intoxication with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). To this aim, we proposed a Radio electric asymmetric conveyer (REAC) technology, with its specific therapeutic protocols of regenerative medicine: tissue optimization - regenerative (TO-RGN), as an innovative therapeutic strategy for the treatment of PD. We observed that REAC TO-RGN exposition can attenuate the damage of nigrostriatal pathway induced by MPTP treatment in mice, decreasing levels of pro-inflammatory mediators in the substantia nigra pars compacta (SNpc) of MPTP-mice. Besides, TH immunostaining in MPTP-treated mice exposed to REAC TO-RGN resulted more pronounced in both substantia nigra and striatum in comparison to animals that received only MPTP treatment. Overall, these data suggest that REAC TO-RGN treatment can have neuroprotective effects in MPTP-induced PD mice model, which may be related to reduced inflammatory reaction.

Collaboration


Dive into the Alessandra Aloisi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge