Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alessandra Bielli is active.

Publication


Featured researches published by Alessandra Bielli.


Life Sciences | 2015

Antioxidants and vascular health

Alessandra Bielli; Maria Giovanna Scioli; Donatella Mazzaglia; Elena Doldo; Augusto Orlandi

Oxygen free radicals and other reactive oxygen species (ROS) are common products of normal aerobic cellular metabolism, but high levels of ROS lead to oxidative stress and cellular damage. Increased production of ROS favors vascular dysfunction, inducing altered vascular permeability and inflammation, accompanied by the loss of vascular modulatory function, the imbalance between vasorelaxation and vasoconstriction, and the aberrant expression of inflammatory adhesion molecules. Inflammatory stimuli promote oxidative stress generated from the increased activity of mitochondrial nicotinamide adenine dinucleotide phosphate oxidase, particularly of the Nox4 isoform, with the consequent impairment of mitochondrial β-oxidation. Vascular dysfunction due to the increase in Nox4 activity and ROS overproduction leads to the progression of cardiovascular diseases, diabetes, inflammatory bowel disease, and neurological disorders. Considerable research into the development of effective antioxidant therapies using natural derivatives or new synthetic molecules has been conducted. Antioxidants may prevent cellular damage by reducing ROS overproduction or interfering in reactions that involve ROS. Vitamin E and ascorbic acid are well known as natural antioxidants that counteract lipid peroxidative damage by scavenging oxygen-derived free radicals, thus restoring vascular function. Recently, preliminary studies on natural antioxidants such as goji berries, thymus, rosemary, green tea ginseng, and garlic have been conducted for their efficacy in preventing vascular damage. N-acetyl-cysteine and propionyl-L-carnitine are synthetic compounds that regulate ROS production by replacing endogenous antioxidants in both endothelial and smooth muscle cells. In this review, we consider the molecular mechanisms underlying the generation of oxidative stress-induced vascular dysfunction as well as the beneficial effects of antioxidant therapies.


SpringerPlus | 2014

Adult adipose-derived stem cells and breast cancer: a controversial relationship

Alessandra Bielli; Maria Giovanna Scioli; Pietro Gentile; Sara Agostinelli; Chiara Tarquini; Valerio Cervelli; Augusto Orlandi

Breast cancer is the most common cancer in women and autologous fat grafting is an important clinical application in treatment of post-surgical deformities. The simplicity of fat grafting procedures and the absence of subsequent visible scar prompted an increasing interest for this technique. The plasticity of adipose-derived stem cells (ASCs) obtained from stromal vascular fraction (SVF) of adult adipose tissue provided exciting perspectives for regenerative medicine and surgery. The recent discovery that SVF/ASC enrichment further ameliorates clinical efficacy of grafting ASCs suggest as ASC-mediated new adipogenesis and vasculogenesis. ASC adipogenic differentiation involves Akt activity and EGFRs, FGFRs, ERbB2 receptor-mediated pathways that also play a pivotal role in the regulation of breast cancer growth. Moreover, the finding that platelet-derived growth factors and hormones improved long-term maintenance of fat grafting raises new concerns for their use during breast reconstruction after cancer surgery. However, it remains unclear whether grafted or resident ASCs may increase the risk of de novo cancer development or recurrence. Preliminary follow-up studies seem to support the efficacy and safety of SVF/ASCs enrichment and the additional benefit from the combined use of autologous platelet-derived growth factors and hormones during breast reconstruction procedures. In the present review we highlighted the complex interplay between resident or grafted ASCs, mature adipocytes, dormant or active breast cancer cells and tumor microenvironment. Actually, data concerning the permissive role of ASCs on breast cancer progression are contrasting, although no clear evidence speaking against their use exists.


International Journal of Molecular Sciences | 2014

The Biomolecular Basis of Adipogenic Differentiation of Adipose-Derived Stem Cells

Maria Giovanna Scioli; Alessandra Bielli; Pietro Gentile; Mazzaglia D; Cervelli; Augusto Orlandi

There is considerable attention regarding the role of receptor signaling and downstream-regulated mediators in the homeostasis of adipocytes, but less information is available concerning adipose-derived stem cell (ASC) biology. Recent studies revealed that the pathways regulating ASC differentiation involve the activity of receptor tyrosine kinases (RTKs), including fibroblast growth factor, vascular endothelial growth factor, ErbB receptors and the downstream-regulated serine/threonine protein kinase B (Akt) and phosphatase and tensin homolog (PTEN) activity. RTKs are cell surface receptors that represent key regulators of cellular homeostasis but also play a critical role in the progression of cancer. Many of the metabolic effects and other consequences of activated RTKs are mediated by the modulation of Akt and extracellular signal-regulated protein kinases 1 (Erk-1) signaling. Akt activity sustains survival and the adipogenic differentiation of ASCs, whereas Erk-1 appears downregulated. The inhibition of FGFR-1, EGFR and ErbB2 reduced proliferation, but only FGFR-1 inihibition reduced Akt activity and adipogenesis. Adipogenesis and neovascularization are also chronologically and spatially coupled processes and RTK activation and downstream targets are also involved in ASC-mediated angiogenesis. The potentiality of ASCs and the possibility to modulate specific molecular pathways underlying ASC biological processes and, in particular, those shared with cancer cells, offer new exciting strategies in the field of regenerative medicine.


Journal of Vascular Research | 2014

Antioxidant Treatment Prevents Serum Deprivation- and TNF-α-Induced Endothelial Dysfunction through the Inhibition of NADPH Oxidase 4 and the Restoration of β-Oxidation

Maria Giovanna Scioli; Alessandra Bielli; Sara Agostinelli; Chiara Tarquini; Gaetano Arcuri; Amedeo Ferlosio; Gaetana Costanza; Elena Doldo; Augusto Orlandi

Aims: Oxidative stress plays a pivotal role in the impaired endothelial function occurring in vascular diseases. Antioxidant strategies induce a clinical advantage in patients with endothelial dysfunction and atherosclerosis and protect from oxidative damage, but the underlying molecular mechanisms have been poorly evaluated. The aim of this study was to analyze the effects and mechanisms of action of antioxidant regimens on endothelial function. Methods and Results: Antioxidant efficacy of N-acetylcysteine, ascorbic acid and propionyl-L-carnitine was evaluated in serum-deprived and TNF-α-stimulated human umbilical vein endothelial cells in vitro. Cell adhesion molecule (CAM) expression was evaluated by blot and real-time PCR, and inflammatory cytokine secretion was evaluated by ELISA; leukocyte adhesion and reactive oxygen species assays and NADPH oxidase 4 isoform (Nox4) expression analyses by blots were also performed. Antioxidant pretreatment restored serum-deprived and TNF-α-induced impaired mitochondrial β-oxidation by reducing flavin adenine dinucleotide level and counteracting increased CAM and Nox4 expression, leukocyte adhesion and inflammatory cytokine secretion. Specific inhibition by plumbagin and siNox4 prevented TNF-α- and serum deprivation-induced detrimental effects, confirming that endothelial oxidative stress and inflammation were Nox4 dependent. Conclusions: Our findings documented Nox4 as a main actor in oxidative stress-induced endothelial dysfunction and further clarify the molecular basis of antioxidant treatment efficacy.


PLOS ONE | 2015

Propionyl-L-Carnitine Enhances Wound Healing and Counteracts Microvascular Endothelial Cell Dysfunction

Maria Giovanna Scioli; Pietro Lo Giudice; Alessandra Bielli; Alfonso De Rosa; Sandro De Falco; Augusto Orlandi

Background Impaired wound healing represents a high cost for health care systems. Endothelial dysfunction characterizes dermal microangiopathy and contributes to delayed wound healing and chronic ulcers. Endothelial dysfunction impairs cutaneous microvascular blood flow by inducing an imbalance between vasorelaxation and vasoconstriction as a consequence of reduced nitric oxide (NO) production and the increase of oxidative stress and inflammation. Propionyl-L-carnitine (PLC) is a natural derivative of carnitine that has been reported to ameliorate post-ischemic blood flow recovery. Methods and Results We investigated the effects of PLC in rat skin flap and cutaneous wound healing. A daily oral PLC treatment improved skin flap viability and associated with reactive oxygen species (ROS) reduction, inducible nitric oxide synthase (iNOS) and NO up-regulation, accelerated wound healing and increased capillary density, likely favoring dermal angiogenesis by up-regulation for iNOS, vascular endothelial growth factor (VEGF), placental growth factor (PlGF) and reduction of NADPH-oxidase 4 (Nox4) expression. In serum-deprived human dermal microvascular endothelial cell cultures, PLC ameliorated endothelial dysfunction by increasing iNOS, PlGF, VEGF receptors 1 and 2 expression and NO level. In addition, PLC counteracted serum deprivation-induced impairment of mitochondrial β-oxidation, Nox4 and cellular adhesion molecule (CAM) expression, ROS generation and leukocyte adhesion. Moreover, dermal microvascular endothelial cell dysfunction was prevented by Nox4 inhibition. Interestingly, inhibition of β-oxidation counteracted the beneficial effects of PLC on oxidative stress and endothelial dysfunction. Conclusion PLC treatment improved rat skin flap viability, accelerated wound healing and dermal angiogenesis. The beneficial effects of PLC likely derived from improvement of mitochondrial β-oxidation and reduction of Nox4-mediated oxidative stress and endothelial dysfunction. Antioxidant therapy and pharmacological targeting of endothelial dysfunction may represent a promising tool for the treatment of delayed wound healing or chronic ulcers.


International Journal of Molecular Sciences | 2015

Molecular Pathways Regulating Macrovascular Pathology and Vascular Smooth Muscle Cells Phenotype in Type 2 Diabetes.

Sara Casella; Alessandra Bielli; Alessandro Mauriello; Augusto Orlandi

Type 2 diabetes mellitus (T2DM) is a disease reaching a pandemic proportion in developed countries and a major risk factor for almost all cardiovascular diseases and their adverse clinical manifestations. T2DM leads to several macrovascular and microvascular alterations that influence the progression of cardiovascular diseases. Vascular smooth muscle cells (VSMCs) are fundamental players in macrovascular alterations of T2DM patients. VSMCs display phenotypic and functional alterations that reflect an altered intracellular biomolecular scenario of great vessels of T2DM patients. Hyperglycemia itself and through intraparietal accumulation of advanced glycation-end products (AGEs) activate different pathways, in particular nuclear factor-κB and MAPKs, while insulin and insulin growth-factor receptors (IGFR) are implicated in the activation of Akt and extracellular-signal-regulated kinases (ERK) 1/2. Nuclear factor-κB is also responsible of increased susceptibility of VSMCs to pro-apoptotic stimuli. Down-regulation of insulin growth-factor 1 receptors (IGFR-1R) activity in diabetic vessels also influences negatively miR-133a levels, so increasing apoptotic susceptibility of VSMCs. Alterations of those bimolecular pathways and related genes associate to the prevalence of a synthetic phenotype of VSMCs induces extracellular matrix alterations of great vessels. A better knowledge of those biomolecular pathways and related genes in VSMCs will help to understand the mechanisms leading to macrovascular alterations in T2DM patients and to suggest new targeted therapies.


Journal of Cellular Physiology | 2014

High insulin-induced down-regulation of Erk-1/IGF-1R/FGFR-1 signaling is required for oxidative stress-mediated apoptosis of adipose-derived stem cells.

Maria Giovanna Scioli; Valerio Cervelli; Gaetano Arcuri; Pietro Gentile; Elena Doldo; Alessandra Bielli; Elena Bonanno; Augusto Orlandi

Homeostasis of adipose tissue requires highly coordinated response between circulating factors and cell population. Human adult adipose‐derived stem cells (ASCs) display multiple differentiation properties and are sensitive to insulin stimulation. Insulin resistance and high level of circulating insulin characterize patients with type 2 diabetes and obesity. At physiological concentration, insulin promoted proliferation and survival of ASCs in vitro, whereas high insulin level induced their dose‐dependent proliferative arrest and apoptosis. Insulin‐induced apoptotic commitment depended on the down‐regulation of Erk‐1, insulin growth factor‐1 receptor (IGF‐1R), and fibroblast growth factor receptor‐1 (FGFR‐1)‐mediated signaling. Specific inhibition of Erk‐1/2, IGF‐1R, and FGFR activity promoted ASC apoptosis but did not increase insulin effects, whereas EGFR and ErbB2 inhibition potentiated insulin‐induced apoptosis. FGFRs and EGFR inhibition reduced ASC adipogenic differentiation, whereas Erk‐1/2 and IGF‐1R inhibition was ineffective. Insulin‐induced apoptosis associated to reactive oxygen species (ROS) accumulation and inhibition of NADPH oxidase 4 (Nox4) activity prevented ASC apoptosis. Moreover, specific inhibition of Erk‐1/2, IGF‐1R, and FGFR‐1 activity promoted ROS generation and this effect was not cumulative with that of insulin alone. Our data indicate that insulin concentration is a critical regulatory switch between proliferation and survival of ASCs. High insulin level‐induced apoptotic machinery involves Nox4‐generated oxidative stress and the down‐regulation of a complex receptor signaling, partially distinct from that influencing adipogenic differentiation of ASCs. J. Cell. Physiol. 229: 2077–2087, 2014.


International Journal of Molecular Sciences | 2017

Evaluation of Not-Activated and Activated PRP in Hair Loss Treatment: Role of Growth Factor and Cytokine Concentrations Obtained by Different Collection Systems

Pietro Gentile; John P. Cole; Megan Cole; Simone Garcovich; Alessandra Bielli; Maria Giovanna Scioli; Augusto Orlandi; Chiara Insalaco; Valerio Cervelli

Platelet rich plasma (PRP) was tested as a potential therapy for androgenetic alopecia (AGA) through two different clinical protocols in which one population (18 participants) received half-head treatment with autologous non-activated PRP (A-PRP) produced by CPunT Preparation System (Biomed Device, Modena, Italy) and the other half-head with placebo, and a second separated population in which all participants (n = 6, 3 participants per group) received treatment with calcium-activated PRP (AA-PRP) produced from one of two different PRP collection devices (Regen Blood Cell Therapy or Arthrex Angel System). For the A-PRP study, three treatments were administered over 30-day intervals. Trichoscan analysis of patients, three months post-treatment, showed a clinical improvement in the number of hairs in the target area (36 ± 3 hairs) and in total hair density (65 ± 5 hair cm2), whereas negligible improvements in hair count (1.1 ± 1.4 hairs) and density (1.9 ± 10.2 hair cm2) were seen in the region of the scalp that received placebo. Microscopic evaluation conducted two weeks after treatment showed also an increase in epidermal thickness, Ki67+ keratinocytes, and in the number of follicles. The AA-PRP treatment groups received a singular set of injections, and six months after the treatments were administered, notable differences in clinical outcomes were obtained from the two PRP collection devices (+90 ± 6 hair cm2 versus −73 ± 30 hair cm2 hair densities, Regen versus Arthrex). Growth factor concentrations in AA-PRP prepared from the two collection devices did not differ significantly upon calcium activation.


Journal of Tissue Engineering and Regenerative Medicine | 2017

Combined treatment with platelet‐rich plasma and insulin favours chondrogenic and osteogenic differentiation of human adipose‐derived stem cells in three‐dimensional collagen scaffolds

Maria Giovanna Scioli; Alessandra Bielli; Pietro Gentile; Valerio Cervelli; Augusto Orlandi

Osteochondral lesions due to injury or other pathology commonly result in the development of osteoarthritis and progressive joint destruction. Bioengineered scaffolds are widely studied for regenerative surgery strategies in osteochondral defect management, also combining the use of stem cells, growth factors and hormones. The utility in tissue engineering of human adipose‐derived stem cells (ASCs) isolated from adipose tissue has been widely noted. Autologous platelet‐rich plasma (PRP) represents an alternative strategy in regenerative medicine for the local release of endogenous growth factors and hormones. Here we compared the effects of three‐dimensional (3D) collagen type I scaffold culture and combined treatment with PRP and human recombinant insulin on the chondro‐/osteogenic differentiation of ASCs. Histochemical and biomolecular analyses demonstrated that chondro‐/osteogenic differentiation was increased in ASC‐populated 3D collagen scaffolds compared with two‐dimensional (2D) plastic dish culture. Chondro‐/osteogenic differentiation was further enhanced in the presence of combined PRP (5% v/v) and insulin (100 nm) treatment. In addition, chondro‐/osteogenic differentiation associated with the contraction of ASC‐populated 3D collagen scaffold and increased β1/β3‐integrin expression. Inhibition studies demonstrated that PRP/insulin‐induced chondro‐/osteogenic differentiation is independent of insulin‐like growth factor 1 receptor (IGF‐1R) and mammalian target of rapamycin (mTOR) signalling; IGF‐R1/mTOR inhibition even enhanced ASC chondro‐/osteogenic differentiation. Our findings underline that 3D collagen scaffold culture in association with platelet‐derived growth factors and insulin favour the chondro‐/osteogenic differentiation of ASCs, suggesting new translational applications in regenerative medicine for the management of osteochondral defects. Copyright


Plastic and reconstructive surgery. Global open | 2016

Reconstruction of Alar Nasal Cartilage Defects Using a Tissue Engineering Technique Based on a Combined Use of Autologous Chondrocyte Micrografts and Platelet-rich Plasma: Preliminary Clinical and Instrumental Evaluation

Pietro Gentile; Maria Giovanna Scioli; Alessandra Bielli; Augusto Orlandi; Valerio Cervelli

Background: Developing cartilage constructs with injectability, appropriate matrix composition, and persistent cartilaginous phenotype remains an enduring challenge in cartilage repair. The combined use of autologous chondrocyte micrografts and platelet-rich plasma (PRP) is an alternative that opens a new era in this field. Methods: At the Department of Plastic and Reconstructive Surgery, University of Rome Tor Vergata, Italy, 11 patients underwent nasal alar reconstruction with chondrocyte micrografts gently poured onto PRP in solid form. A computed tomographic scan control was performed after 12 months. Pearson’s Chi-square test was used to investigate difference in cartilage density between native and newly formed cartilages. Results: The constructs of chondrocyte micrografts–PRP that were subcutaneously injected resulted in a persistent cartilage tissue with appropriate morphology, adequate central nutritional perfusion without central necrosis or ossification, and further augmented nasal dorsum without obvious contraction and deformation. Conclusion: This report demonstrated that chondrocyte micrografts derived from nasal septum poured onto PRP in solid form are useful for cartilage regeneration in patients with external nasal valve collapse.

Collaboration


Dive into the Alessandra Bielli's collaboration.

Top Co-Authors

Avatar

Augusto Orlandi

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Pietro Gentile

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar

Valerio Cervelli

University of Rome Tor Vergata

View shared research outputs
Top Co-Authors

Avatar

Elena Doldo

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar

Simone Garcovich

Catholic University of the Sacred Heart

View shared research outputs
Top Co-Authors

Avatar

Amedeo Ferlosio

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar

Chiara Tarquini

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar

Gaetano Arcuri

University of Rome Tor Vergata

View shared research outputs
Top Co-Authors

Avatar

Sara Agostinelli

Sapienza University of Rome

View shared research outputs
Researchain Logo
Decentralizing Knowledge