Alessandra Bonanni
Nanyang Technological University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Alessandra Bonanni.
Chemistry: A European Journal | 2011
Adriano Ambrosi; Alessandra Bonanni; Zdeněk Sofer; Jeffrey S. Cross; Martin Pumera
Electrochemical applications of graphene are of great interest to many researchers as they can potentially lead to crucial technological advancements in fabrication of electrochemical devices for energy production and storage, and highly sensitive sensors. There are many routes towards fabrication of bulk quantities of chemically modified graphenes (CMG) for applications such as electrode materials. Each of them yields different graphene materials with different functionalities and structural defects. Here, we compare the electrochemical properties of five different chemically modified graphenes: graphite oxide, graphene oxide, thermally reduced graphene oxide, chemically reduced graphene oxide, and electrochemically reduced graphene oxide. We characterized these materials using transmission electron microscopy, Raman spectroscopy, high-resolution X-ray photoelectron spectroscopy, electrochemical impedance spectroscopy, and cyclic voltammetry, which allowed us to correlate the electrochemical properties with the structural and chemical features of the CMGs. We found that thermally reduced graphene oxide offers the most favorable electrochemical performance among the different materials studied. Our findings have a profound impact for the applications of chemically modified graphenes in electrochemical devices.
ACS Nano | 2011
Alessandra Bonanni; Martin Pumera
There is enormous need for sensitive and selective detection of single nucleotide polymorphism of a DNA strand as this issue is related to many major diseases and disorders, such as Parkinsons and Alzheimers disease. To achieve sensitivity and selectivity of the detection, a highly sensitive transducer of the signal with high surface area is required. In this work we employ a graphene platform to combine the sensitivity of electrochemical impedance spectroscopy with the high selectivity of hairpin-shaped DNA probes for the rapid detection of single nucleotide polymorphism correlated to the development of Alzheimers disease. We investigate the influence of various graphene platforms consisting of different numbers of same-sized graphene layers. We believe that our findings are an important step toward highly sensitive and selective sensing architectures.
Analytica Chimica Acta | 2010
Alessandra Bonanni; M. del Valle
This review presents the state of the art of DNA sensors (or genosensors) that utilize electrochemical impedance spectroscopy as the transduction technique. As issue of current interest, it is centered on the use of nanomaterials to develop or to improve performance of these specific biosensors. It will describe the different principles that may be employed in the measuring step and the different formats adopted for detection of a DNA sequence or confirmation or amplification of the finally obtained signal. The use of nanomaterials for the above listed aspects, viz. the use of carbon nanotubes or other nanoscopic elements in the construction of the electrodes, or the use of nanoparticles, mainly gold or quantum dots, for signal enhancement will be fully revised.
ACS Nano | 2012
Alessandra Bonanni; Chun Kiang Chua; Guanjia Zhao; Zdeněk Sofer; Martin Pumera
Graphene materials are being widely used in electrochemistry due to their versatility and excellent properties as platforms for biosensing. However, no records show the use of inherent redox properties of graphene oxide as a label for detection. Here for the first time we used graphene oxide nanoplatelets (GONPs) as electroactive labels for DNA analysis. The working signal comes from the reduction of the oxygen-containing groups present on the surface of GONPs. The different ability of the graphene oxide nanoplatelets to conjugate to DNA hybrids obtained with complementary, noncomplementary, and one-mismatch sequences allows the discrimination of single-nucleotide polymorphism correlated with Alzheimers disease. We believe that our findings are very important to open a new route in the use of graphene oxide in electrochemistry.
ACS Applied Materials & Interfaces | 2016
Adeline Huiling Loo; Zdenek Sofer; Daniel Bouša; Pavel Ulbrich; Alessandra Bonanni; Martin Pumera
The demand for simple, sensitive, affordable, and selective DNA biosensors is ubiquitous, due to the important role that DNA detection performs in the areas of disease diagnostics, environment monitoring, and food safety. A novel application of carboxylic carbon quantum dots (cCQD) is highlighted in this study. Herein, cCQD function as a nanoquencher in the detection of nucleic acid based on a homogeneous fluorescent assay. To that purpose, the performance of two types of cCQD, namely, citric acid QD and malic acid QD, is evaluated. The principle behind the sensing of nucleic acid lies in the different propensity of single-stranded DNA and double-stranded DNA to adsorb onto the surface of cCQD. For both types of cCQD, a superior range of detection of at least 3 orders of magnitude is achieved, and the potential to distinguish single-base mismatch is also exhibited. These findings are anticipated to provide valuable insights on the employment of cCQD for the fabrication of future DNA biosensors.
Chemistry: A European Journal | 2012
Alessandra Bonanni; Adriano Ambrosi; Martin Pumera
There is immense demand for complex nanoarchitectures based on graphene nanostructures in the fields of biosensing or nanoelectronics. DNA molecules represent the most versatile and programmable recognition element and can provide a unique massive parallel assembly strategy with graphene nanomaterials. Here we demonstrate a facile strategy for covalent linking of single stranded DNA (ssDNA) to graphene using carbodiimide chemistry and apply it to genosensing. Since graphenes can be prepared by different methods and can contain various oxygen containing groups, we thoroughly investigated the utility of four different chemically modified graphenes for functionalization by ssDNA. The materials were characterized in detail and the different DNA functionalized graphene platforms were then employed for the detection of DNA hybridization and DNA polymorphism by using impedimetric methods. We believe that our findings are very important for the development of novel devices that can be used as alternatives to classical techniques for sensitive and fast DNA analysis. In addition, covalent functionalization of graphene with ssDNA is expected to have broad implications, from biosensing to nanoelectronics and directed, DNA programmable, self-assembly.
Chemistry: A European Journal | 2012
Alessandra Bonanni; Adriano Ambrosi; Martin Pumera
Reduced graphenes (belonging to the class of chemically modified graphenes, CMG) are one of the most investigated and utilized materials in current research. Oxygen functionalities on the CMG surfaces have dramatic influences on material properties. Interestingly, these functionalities are rarely comprehensively characterized. Herein, the four most commonly used CMGs, mainly electrochemically reduced graphene oxide (ER-GO), thermally reduced graphene oxide (TR-GO), and the corresponding starting materials, that is, graphene oxide and graphite oxide, were comprehensively characterized by a wide variety of methods, such as high-resolution X-ray photoelectron spectroscopy, electrochemical impedance spectroscopy, UV/Vis spectroscopy, transmission electron microscopy (TEM), and voltammetry, to establish connections between the structures of these materials that carry different oxygen functionalities and their electrochemical behaviors. This was followed by the quantification of the negatively charged oxygen-containing groups (OCGs) by UV/Vis spectroscopy and of the electrochemically reducible OCGs by voltammetry. Lastly, a biofunctionalization with gold nanoparticle (AuNP)-modified DNA sequences was performed by the formation of covalent bonds with the carboxylic groups (-COOH) on the CMG surfaces. There was an evident predominance of functionalizable -COOH groups on the ER-GO surface, as confirmed by a higher amount of Au detected both with differential-pulse voltammetry and impedance spectroscopy, coupled with visualization by TEM. We exploited the DNA-Au bioconjugates as highly specific stains to localize and visualize the positions of carboxylic groups. Our findings are very important to clearly identify the presence, nature, and distribution of oxygen functionalities on different chemically modified graphenes.
Biosensors and Bioelectronics | 2009
Alessandra Bonanni; M.J. Esplandiu; M. del Valle
Screen-printed electrodes modified with carboxyl functionalised multi-walled carbon nanotubes were used as platforms for impedimetric genosensing of oligonucleotide sequences specific for transgenic insect resistant Bt maize. After covalent immobilization of aminated DNA probe using carbodiimide chemistry, the impedance measurement was performed in a solution containing the redox marker ferrocyanide/ferricyanide. A complementary oligomer (target) was then added, its hybridization was promoted and the measurement performed as before. The change of interfacial charge transfer resistance between the solution and the electrode surface, experimented by the redox marker at the applied potential, was recorded to confirm the hybrid formation. Non-complementary DNA sequences containing a different number of base mismatches were also employed in the experiments in order to test specificity. A signal amplification protocol was then performed, using a biotinylated complementary target to capture streptavidin modified gold nanoparticles, thus increasing the final impedimetric signal (LOD improved from 72 to 22 fmol, maintaining a good reproducibility, in fact RSD<12.8% in all examined cases). In order to visualize the presence and distribution of gold nanoparticles, a silver enhancement treatment was applied to electrodes already modified with DNA-nanoparticles conjugate, allowing direct observation by scanning electron microscopy.
Physical Chemistry Chemical Physics | 2011
Alessandra Bonanni; Martin Pumera; Yuji Miyahara
The electrochemical behavior of different size gold nanoparticles (AuNPs) was investigated. AuNPs with 2, 5, 10, 15, 20 and 50 nm diameters were immobilized onto a screen printed carbon electrode surface by physical adsorption. The impedimetric response was measured for different diameter AuNPs at a fixed value of their surface area, at the same content of gold (Au) and at the same concentration. In a further experiment, the impedimetric response toward AuNP concentration was measured for each diameter. Impedimetric results were compared with results obtained for the detection of Au by stripping voltammetry. Additionally, variability of active surface area and roughness of different electrodes before and after immobilization of AuNPs were carefully evaluated by means of cyclic voltammetry and laser scanning microscopy. Electrochemical impedance spectroscopy (EIS) is a sensitive technique capable of differentiating the signal generated by AuNPs of different sizes, thus providing useful information for the employment of AuNPs in electrochemical biosensors.
Analyst | 2011
Madeline Shuhua Goh; Alessandra Bonanni; Adriano Ambrosi; Zdeněk Sofer; Martin Pumera
We studied the electroanalytical performances of chemically-modified graphenes (CMGs) containing different defect densities and amounts of oxygen-containing groups, namely graphite oxide (GPO), graphene oxide (GO), thermally reduced graphene oxide (TR-GO) and electrochemically reduced graphene oxide (ER-GO) by comparing the sensitivity, selectivity, linearity and repeatability towards the oxidation of DNA bases. We have observed that for differential pulse voltammetric (DPV) detection of adenine and cytosine, all CMGs showed enhanced sensitivity to oxidation, while for guanine and thymine, ER-GO and TR-GO exhibited much improved sensitivity over bare glassy carbon (GC) as well as over GPO and GO. There is also significant selectivity enhancement when using GPO for adenine and TR-GO for thymine. Our results have uncovered that the differences in surface functionalities, structure and defects of various CMGs largely influence their electrochemical behaviour in detecting the oxidation of DNA bases. The findings in this report will provide a useful guide for the future development of label-free electrochemical devices for DNA analysis.