Alessandra Fidelis
Sao Paulo State University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Alessandra Fidelis.
Science | 2015
Lauchlan H. Fraser; Jason Pither; Anke Jentsch; Marcelo Sternberg; Martin Zobel; Diana Askarizadeh; Sándor Bartha; Carl Beierkuhnlein; Jonathan A. Bennett; Alex Bittel; Bazartseren Boldgiv; Ilsi Iob Boldrini; Edward W. Bork; Leslie R. Brown; Marcelo Cabido; James F. Cahill; Cameron N. Carlyle; Giandiego Campetella; Stefano Chelli; Ofer Cohen; Anna Maria Csergo; Sandra Díaz; Lucas Enrico; David Ensing; Alessandra Fidelis; Jason D. Fridley; Bryan L. Foster; Heath W. Garris; Jacob R. Goheen; Hugh A. L. Henry
Grassland diversity and ecosystem productivity The relationship between plant species diversity and ecosystem productivity is controversial. The debate concerns whether diversity peaks at intermediate levels of productivity—the so-called humped-back model—or whether there is no clear predictable relationship. Fraser et al. used a large, standardized, and geographically diverse sample of grasslands from six continents to confirm the validity and generality of the humped-back model. Their findings pave the way for a more mechanistic understanding of the factors controlling species diversity. Science, this issue p. 302 The humped-back model of plant species diversity is confirmed by a global grassland survey. The search for predictions of species diversity across environmental gradients has challenged ecologists for decades. The humped-back model (HBM) suggests that plant diversity peaks at intermediate productivity; at low productivity few species can tolerate the environmental stresses, and at high productivity a few highly competitive species dominate. Over time the HBM has become increasingly controversial, and recent studies claim to have refuted it. Here, by using data from coordinated surveys conducted throughout grasslands worldwide and comprising a wide range of site productivities, we provide evidence in support of the HBM pattern at both global and regional extents. The relationships described here provide a foundation for further research into the local, landscape, and historical factors that maintain biodiversity.
New Phytologist | 2018
Juli G. Pausas; Byron B. Lamont; Susana Paula; Beatriz Appezzato-da-Glória; Alessandra Fidelis
Despite long-time awareness of the importance of the location of buds in plant biology, research on belowground bud banks has been scant. Terms such as lignotuber, xylopodium and sobole, all referring to belowground bud-bearing structures, are used inconsistently in the literature. Because soil efficiently insulates meristems from the heat of fire, concealing buds below ground provides fitness benefits in fire-prone ecosystems. Thus, in these ecosystems, there is a remarkable diversity of bud-bearing structures. There are at least six locations where belowground buds are stored: roots, root crown, rhizomes, woody burls, fleshy swellings and belowground caudexes. These support many morphologically distinct organs. Given their history and function, these organs may be divided into three groups: those that originated in the early history of plants and that currently are widespread (bud-bearing roots and root crowns); those that also originated early and have spread mainly among ferns and monocots (nonwoody rhizomes and a wide range of fleshy underground swellings); and those that originated later in history and are strictly tied to fire-prone ecosystems (woody rhizomes, lignotubers and xylopodia). Recognizing the diversity of belowground bud banks is the starting point for understanding the many evolutionary pathways available for responding to severe recurrent disturbances.
International Journal of Wildland Fire | 2017
Mariana Ninno Rissi; M. Jaime Baeza; Elizabeth Gorgone-Barbosa; Talita Zupo; Alessandra Fidelis
Fire has played an important role in the plant dynamics and diversity of the Cerrado for millions of years. We evaluated fire behaviour in different fire seasons in areas of an open savanna, providing information for fire management plans. It has been hypothesised that early fires (May – end of the rainy season) will be less intense than those conducted in the middle and end of the dry season (July and October) owing to the amount of dead biomass accumulated. Therefore, we compared fire behaviour in early, mid- and late dry season, evaluating the main fire and environmental variables. Fire intensity was mainly influenced by the combination of dead fuel percentage and fuel load. Even though this combination was the best model to explain fire intensity variability, fire parameters (including fire intensity) did not differ between fire seasons. Flame height was best explained by dead fuel percentage + fuel moisture content, dead fuel percentage + fuel load and also by dead fuel percentage. Our study showed that, in areas with fire exclusion for 2 years, fire season did not influence fire parameters and fire behaviour and the main factors influencing fire intensity were the proportion of dead biomass and total fuel load.
New Phytologist | 2018
Arne Saatkamp; Anne Cochrane; Lucy E. Commander; Lydia K. Guja; Borja Jiménez-Alfaro; Julie Larson; Adrienne B. Nicotra; Peter Poschlod; Fernando A. O. Silveira; Adam T. Cross; Emma L. Dalziell; John B. Dickie; Todd E. Erickson; Alessandra Fidelis; Anne Fuchs; Peter J. Golos; Michael Hope; Wolfgang Lewandrowski; David J. Merritt; Ben P. Miller; Russell G. Miller; Catherine A. Offord; Mark K. J. Ooi; Annisa Satyanti; Karen D. Sommerville; Ryan Tangney; Sean Tomlinson; Shane R. Turner; Jeffrey L. Walck
Trait-based approaches have improved our understanding of plant evolution, community assembly and ecosystem functioning. A major challenge for the upcoming decades is to understand the functions and evolution of early life-history traits, across levels of organization and ecological strategies. Although a variety of seed traits are critical for dispersal, persistence, germination timing and seedling establishment, only seed mass has been considered systematically. Here we suggest broadening the range of morphological, physiological and biochemical seed traits to add new understanding on plant niches, population dynamics and community assembly. The diversity of seed traits and functions provides an important challenge that will require international collaboration in three areas of research. First, we present a conceptual framework for a seed ecological spectrum that builds upon current understanding of plant niches. We then lay the foundation for a seed-trait functional network, the establishment of which will underpin and facilitate trait-based inferences. Finally, we anticipate novel insights and challenges associated with incorporating diverse seed traits into predictive evolutionary ecology, community ecology and applied ecology. If the community invests in standardized seed-trait collection and the implementation of rigorous databases, major strides can be made at this exciting frontier of functional ecology.
Biological Reviews | 2018
Elise Buisson; Soizig Le Stradic; Fernando A. O. Silveira; Giselda Durigan; Gerhard E. Overbeck; Alessandra Fidelis; G. Wilson Fernandes; William J. Bond; Julia-Maria Hermann; Grégory Mahy; Swanni Tatiana Alvarado; Nicholas P. Zaloumis; Joseph W. Veldman
Despite growing recognition of the conservation values of grassy biomes, our understanding of how to maintain and restore biodiverse tropical grasslands (including savannas and open‐canopy grassy woodlands) remains limited. To incorporate grasslands into large‐scale restoration efforts, we synthesised existing ecological knowledge of tropical grassland resilience and approaches to plant community restoration. Tropical grassland plant communities are resilient to, and often dependent on, the endogenous disturbances with which they evolved – frequent fires and native megafaunal herbivory. In stark contrast, tropical grasslands are extremely vulnerable to human‐caused exogenous disturbances, particularly those that alter soils and destroy belowground biomass (e.g. tillage agriculture, surface mining); tropical grassland restoration after severe soil disturbances is expensive and rarely achieves management targets. Where grasslands have been degraded by altered disturbance regimes (e.g. fire exclusion), exotic plant invasions, or afforestation, restoration efforts can recreate vegetation structure (i.e. historical tree density and herbaceous ground cover), but species‐diverse plant communities, including endemic species, are slow to recover. Complicating plant‐community restoration efforts, many tropical grassland species, particularly those that invest in underground storage organs, are difficult to propagate and re‐establish. To guide restoration decisions, we draw on the old‐growth grassland concept, the novel ecosystem concept, and theory regarding tree cover along resource gradients in savannas to propose a conceptual framework that classifies tropical grasslands into three broad ecosystem states. These states are: (1) old‐growth grasslands (i.e. ancient, biodiverse grassy ecosystems), where management should focus on the maintenance of disturbance regimes; (2) hybrid grasslands, where restoration should emphasise a return towards the old‐growth state; and (3) novel ecosystems, where the magnitude of environmental change (i.e. a shift to an alternative ecosystem state) or the socioecological context preclude a return to historical conditions.
Australian Journal of Botany | 2018
L. Felipe Daibes; Elizabeth Gorgone-Barbosa; Fernando A. O. Silveira; Alessandra Fidelis
The fine-scale effects of fire and the consequences for seed survival are poorly understood, especially in the Cerrado (Brazilian savannas). Thus, we investigated whether vegetation gaps (bare soil patches) influence the survival of exposed seeds during fire events in the Cerrado by serving as safe sites. We performed field fire experiments in Central Brazil to examine how gap size (% of bare soil) influences fire heat (fire temperatures and residence time) and seed survival (Experiment 1) and to determine how seed survival is affected by fixed conditions: gaps vs grass tussocks during fires (Experiment 2). We used seeds of two common Cerrado legumes, Mimosa leiocephala Benth. and Harpalyce brasiliana Benth. Seed survival was analysed using GLMMs with a binomial distribution. In Experiment 1, seeds survived (38 and 35% for M. leiocephala and H. brasiliana respectively) only when the gaps had >40% of bare soil. In Experiment 2, all seeds under grass tussocks died when exposed to fire, whereas up to 40% of seeds survived in vegetation gaps, relative to their respective controls. Because vegetation gaps influence fire heat, they are important as safe sites for seed survival in the Cerrado, allowing a significant proportion of seeds to survive when exposed at the soil surface.
Perspectives in Plant Ecology Evolution and Systematics | 2007
Gerhard E. Overbeck; Sandra Cristina Müller; Alessandra Fidelis; Jörg Pfadenhauer; Valério D. Pillar; Carolina C. Blanco; Ilsi Iob Boldrini; Rogério Both; Eduardo Dias Forneck
Journal of Vegetation Science | 2016
Borja Jiménez-Alfaro; Fernando A. O. Silveira; Alessandra Fidelis; Peter Poschlod; Lucy E. Commander
Plant Ecology | 2008
Alessandra Fidelis; Gerhard E. Overbeck; Valério D. Pillar; Jörg Pfadenhauer
Flora | 2014
Alessandra Fidelis; Beatriz Appezzato-da-Glória; Valério D. Pillar; Joerg Pfadenhauer