Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alessandra Lombardi is active.

Publication


Featured researches published by Alessandra Lombardi.


Archive | 2000

Conceptual design of the SPL II : A high-power superconducting

M Baylac; M Magistris; M. Paoluzzi; M Hori; D. Küchler; E Froidefond; K. Hanke; C Rossi; T Meinschad; A López Hernández; R. Garoby; Palladino; Alessandra Lombardi; S Chel; R Duperrier; M. Vretenar; J B Lallement; J M Deconto; R. Scrivens; J Inigo-Golfin; T Steiner; T. Kroyer; J P Royer; Antonio Millich; E Benedico-Mora; M Silari; E Sargsyan; E Noah-Messomo; C Pagani; D Uriot

An analysis of the revised physics needs and recent progress in the technology of superconducting RF cavities have led to major changes in the specification and in the design for a Superconducting Proton Linac (SPL) at CERN. Compared with the first conceptual design report (CERN 2000–012) the beam energy is almost doubled (3.5 GeV instead of 2.2 GeV), while the length of the linac is reduced by 40% and the repetition rate is reduced to 50 Hz. The basic beam power is at a level of 4–5 MW and the approach chosen offers enough margins for upgrades. With this high beam power, the SPL can be the proton driver for an ISOL-type radioactive ion beam facility of the next generation (‘EURISOL’), and for a neutrino facility based on superbeam C beta-beam or on muon decay in a storage ring (‘neutrino factory’). The SPL can also replace the Linac2 and PS Booster in the low-energy part of the CERN proton accelerator complex, improving significantly the beam performance in terms of brightness and intensity for the benefit of all users including the LHC and its luminosity upgrade. Decommissioned LEP klystrons and RF equipment are used to provide RF power at a frequency of 352.2 MHz in the lowenergy part of the accelerator. Beyond 90 MeV, the RF frequency is doubled to take advantage of more compact normal-conducting accelerating structures up to an energy of 180 MeV. From there, state-ofthe-art, high-gradient, bulk-niobium superconducting cavities accelerate the beam up to its final energy of 3.5 GeV. The overall design approach is presented, together with the progress that has been achieved since the publication of the first conceptual design report.


Nuclear Instruments & Methods in Physics Research Section A-accelerators Spectrometers Detectors and Associated Equipment | 2001

H^-

Alessandra Lombardi

Abstract In this note a scheme for the collection, phase rotation and cooling of muons for a neutrino factory is reported. The scheme is sufficiently generic to be site independent also if some particular choices are influenced by the CERN design. The system discussed in this note is worked on as a possible alternative to the induction linac scheme. The results presented assume the following overall set-up: the proton driver is constituted by a 2.2xa0GeV superconducting linac followed by an accumulator and compressor ring; the muon re-circulator and decay ring are assumed as described in PJK scenario.


Archive | 2002

linac at CERN

P. Gruber; G. Rees; D. Küchler; A Verdier; B Holzer; D Möhl; P. Zucchelli; K. Hanke; L. Palumbo; K Bongardt; M. Giovannozzi; David Neuffer; A Riche; M. Martini; Karlheinz Schindl; P. Sievers; R. Garoby; R Edgecocka; Yu Senichev; M G Castellano; H L Ravn; Anke-Susanne Müller; C. Densham; S. Gilardoni; C Wyss; K Hübner; Elias Métral; M Poehler; F. Tazzioli; C R Prior

The Neutrino Factory is a new concept for an accelerator that produces a high-intensity, high-energy beam of electron and muon neutrinos – the ultimate tool for neutrino oscillation studies and the only machine conceived up today that could help detect CP violation of leptons. The basic concept of the Neutrino Factory is the production of neutrinos from the decay of high-energy muons. Due to their short lifetime, these muons have to be accelerated very fast. Several new accelerator techniques, like a high-intenstiy proton linac, high-power targets, ionization cooling or recirculating muon linacs are required. This paper presents a snapshot of the accelerator design at CERN. Although some aspects of this European Neutrino Factory Scheme have been optimised for the CERN site, the basic principle is siteindependent.


Review of Scientific Instruments | 2016

A 40–80 MHz system for phase rotation and cooling

J. Lettry; Davide Aguglia; J. Alessi; P. Andersson; S. Bertolo; S. Briefi; A. Butterworth; Y. Coutron; Alessandro Dallocchio; N. David; E. Chaudet; D. Faircloth; U. Fantz; D. Fink; M. Garlasche; A. Grudiev; R. Guida; J. Hansen; M. Haase; A. Hatayama; A. Jones; I. Koszar; J.-B. Lallement; Alessandra Lombardi; C. Machado; C. Mastrostefano; S. Mathot; Stefano Mattei; P. Moyret; D. Nisbet

CERNs 160 MeV H(-) linear accelerator (Linac4) is a key constituent of the injector chain upgrade of the Large Hadron Collider that is being installed and commissioned. A cesiated surface ion source prototype is being tested and has delivered a beam intensity of 45 mA within an emittance of 0.3 π ⋅ mm ⋅ mrad. The optimum ratio of the co-extracted electron- to ion-current is below 1 and the best production efficiency, defined as the ratio of the beam current to the 2 MHz RF-power transmitted to the plasma, reached 1.1 mA/kW. The H(-) source prototype and the first tests of the new ion source optics, electron-dump, and front end developed to minimize the beam emittance are presented. A temperature regulated magnetron H(-) source developed by the Brookhaven National Laboratory was built at CERN. The first tests of the magnetron operated at 0.8 Hz repetition rate are described.


Review of Scientific Instruments | 1998

THE STUDY OF A EUROPEAN NEUTRINO FACTORY COMPLEX

H. Haseroth; H. Kugler; K. Langbein; N. Lisi; Alessandra Lombardi; H. Magnusson; W. Pirkl; J.-C. Schnuriger; R. Scrivens; J. Tambini; E. Tanke; S. Homenko; K. Makarov; V. Roerich; A. Stepanov; Yu.A. Satov; S. Kondrashev; S. Savin; B. Sharkov; A. Shumshurov; J. Krása; L. Láska; M. Pfeifer; E. Woryna

The high current, high charge-state ion beam which can be extracted from a laser produced plasma is well suited, after initial acceleration, for injection into synchrotrons. At CERN, the production of a heavy ion beam using a CO2 laser ion source is studied. The latest results of experiments with a tantalum ion beam with charge states up to 23+ and accelerated by a radio frequency quadrupole from 6.9 to 100 keV/u, are presented along with simulations of the low energy beam transport. The ion yield at the desired charge state, the pulse to pulse stability of the ion beam, and the system reliability are all of major interest. Work is under way to replace the low repetition rate free-running laser oscillator by a master oscillator and power amplifier system. The master oscillator is operational and the first results of measurements of its beam quality and stability are presented.


Nuclear Instruments & Methods in Physics Research Section A-accelerators Spectrometers Detectors and Associated Equipment | 1996

Linac4 H⁻ ion sources.

P. Lapostolle; Alessandra Lombardi; E. Tanke; S. Valero; R. W. Garnett; Thomas P. Wangler

Abstract In 1991 a space charge calculation for bunched beam with a three-dimensional ellipsoid was proposed, replacing the usual SCHEFF routines. It removes the cylindrical symmetry required in SCHEFF and avoids the point to point interaction computation, whose number of simulation points is limited. This routine has now been improved with the introduction of two or three ellipsoids giving a good representation of the complex non-symmetrical form of the bunch (unlike the 3-d ellipsoidal assumption). The ellipsoidal density distributions are computed with a new method, avoiding the difficulty encountered near the centre (the axis in 2-d problems) by the previous method. It also provides a check of the ellipsoidal symmetry for each part of the distribution. Finally, the Fourier analysis reported in 1991 has been replaced by a very convenient Hermite expansion, which gives a simple but accurate representation of practical distributions. Comparisons with other space charge routines have been made, particularly with the ones applying other techniques such as SCHEFF. Introduced in the versatile beam dynamics code DYNAC, it should provide a good tool for the study of the various parameters responsible for the halo formation in high intensity linacs. Improvements of the method are under development by the authors. These improvements, which might lead to a new step in space charge computations, are however beyond the scope of this article.


Archive | 2012

Developments at the CERN laser ion source

Hannes Bartosik; Heiko Damerau; G. Rumolo; Alessandra Lombardi; M. Vretenar; Raginel; K. Hanke; E. Shaposhnikova; C. Carli; B. Goddard; S. Gilardoni; S. Hancock; R Garoby; B Mikulec

The main upgrades of the injector chain in the framework of the LIU Project will only be implemented in the second long shutdown (LS2), in particular the increase of the PSB-PS transfer energy to 2GeV or the implementation of cures/solutions against instabilities/e-cloud effects etc. in the SPS. On the other hand, Linac4 will become available by the end of 2014. Until the end of 2015 it may replace Linac2 at short notice, taking 50MeV protons into the PSB via the existing injection system but with reduced performance. Afterwards, the H− injection equipment will be ready and Linac4 could be connected for 160MeV H− injection into the PSB during a prolonged winter shutdown before LS2. The anticipated beam performance of the LHC injectors after LS1 in these different cases is presented. Space charge on the PS flat-bottom will remain a limitation because the PSB-PS transfer energy will stay at 1.4GeV. As a mitigation measure new RF manipulations are presented which can improve brightness for 25 ns bunch spacing, allowing for more than nominal luminosity in the LHC.


Review of Scientific Instruments | 2014

A modified space charge routine for high intensity bunched beams

R. Scrivens; G.Bellodi; O. Crettiez; Veliko Dimov; D. Gerard; E. Granemann Souza; R. Guida; J. Hansen; Jean-Baptiste Lallement; J. Lettry; Alessandra Lombardi; Ø. Midttun; C. Pasquino; U.Raich; B. Riffaud; F.Roncarolo; C. A. Valerio-Lizarraga; J. Wallner; M.Yarmohammadi Satri; T. Zickler

Linac4, a 160 MeV normal-conducting H(-) linear accelerator, is the first step in the upgrade of the beam intensity available from the LHC proton injectors at CERN. The Linac4 Low Energy Beam Transport (LEBT) line from the pulsed 2 MHz RF driven ion source, to the 352 MHz RFQ (Radiofrequency Quadrupole) has been built and installed at a test stand, and has been used to transport and match to the RFQ a pulsed 14 mA H(-) beam at 45 keV. A temporary slit-and-grid emittance measurement system has been put in place to characterize the beam delivered to the RFQ. In this paper a description of the LEBT and its beam diagnostics is given, and the results of beam emittance measurements and beam transmission measurements through the RFQ are compared with the expectation from simulations.


Proceedings of the 1999 Particle Accelerator Conference (Cat. No.99CH36366) | 1999

Performance potential of the injectors after LS1

P. Fournier; G. Grégoire; H. Haseroth; H. Kupler; N. Lisi; Alessandra Lombardi; C. Meyer; P. Ostroumov; W. Pirkl; J.-C. Schnuriger; R. Scrivens; V. Tenishev; F. Varela-Rodriguez; S. Kondrashev; J. Roudskoy; B. Sharkov; A. Shumshurov; S. Khomenko; K. Makarov; V. Roerich; Y. Satov; A. Stepanov

CERN, together with ITEP and TRINITI (Russia), is developing a CO/sub 2/ laser ion source. The key design parameters are: 1.4/spl times/10/sup 10/ ions of Pb/sup 25+/ in a pulse of 5.5 /spl mu/s, with a 4-RMS emittance of 0.2/spl times/10/sup -6/ rad m, working at a repetition rate of 1 Hz. This device is considered as one candidate source for LHC heavy ion operation. The status of the laser development, the experimental set-up of the source consisting of the target area and its illumination, the plasma expansion area and extraction, beam transport and ion pre-acceleration by an RFQ, will be given,.


Archive | 2014

Linac4 low energy beam measurements with negative hydrogen ions.

Frank Gerigk; S. Atieh; I Aviles Santillana; W. Bartmann; J. Borburgh; O. Brunner; S Calatroni; Ofelia Capatina; J Chambrillon; E. Ciapala; M. Eshraqi; Leonel Ferreira; R. Garoby; B. Goddard; C. Hessler; W. Hofle; S. Horvath-Mikulas; T Junginger; E. Kozlova; E. Lebbos; J. Lettry; K. Liao; Alessandra Lombardi; Alick Macpherson; Eric Montesinos; D. Nisbet; T. Otto; M. Paoluzzi; Kai Papke; V. Parma

The potential for a superconducting proton linac (SPL) at CERN started to be seriously considered at the end of the 1990s. In the first conceptual design report (CDR), published in 2000 [1], most of the 352 MHz RF equipment from LEP was re-used in an 800 m long linac, and the proton beam energy was limited to 2.2 GeV. During the following years, the design was revisited and optimized to better match the needs of a high-power proton driver for neutrino physics. The result was a more compact (470 m long) accelerator capable of delivering 5 MW of beam power at 3.5 GeV, using state-of-the-art superconducting RF cavities at 704 MHz. It was described in a second CDR, published in 2006 [2]. Soon afterwards, when preparation for increasing the luminosity of the LHC by an order of magnitude beyond nominal became an important concern, a low-power SPL (LP-SPL) was studied as a key component in the renovation of the LHC injector complex. The combination of a 4 GeV LP-SPL injecting into a new 50 GeV synchrotron (PS2) was proposed to replace the ageing Linac2, PSB, and PS. In a later stage, if necessary for future physics programmes (neutrino production or generation of radioactive ion beams), the linac could be brought up to multimegawatt beam power by upgrading the cooling, the electrical infrastructure, and the power supplies. The construction of the low-energy front end of the LP-SPL started in 2008 as the Linac4 project [3], aimed at the replacement of Linac2, with the potential for being adapted later to the needs of a low-power or high-power SPL (HP-SPL). In parallel, the R&D on the superconducting linac continued, initially to refine the design of the LP-SPL and afterwards that of the HP-SPL. This report presents the design of the LP-SPL and the work accomplished in preparing a proposal for new LHC injectors with the support of the European Commission under the Framework Programmes 6 and 7 and in collaboration with multiple laboratories and institutions worldwide. The status of the R&D towards an HP-SPL is summarized.

Collaboration


Dive into the Alessandra Lombardi's collaboration.

Researchain Logo
Decentralizing Knowledge