Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alessandra Martelli is active.

Publication


Featured researches published by Alessandra Martelli.


Veterinary Research Communications | 2010

Isolation, characterization, and in vitro differentiation of ovine amniotic stem cells

Annunziata Mauro; Maura Turriani; A. Ioannoni; Valentina Russo; Alessandra Martelli; O. Di Giacinto; Delia Nardinocchi; Paolo Berardinelli

Stem cell (SC) regenerative therapy represents an emerging strategy for the treatment of human diseases. Since amniotic fluid-derived cells have been recently proposed as a promising source of human SCs, the present research aimed to amplify in vitro and characterize ovine amniotic fluid-derived SCs collected from the membranes (AMSCs) or fluid (AFSCs). These cells were found to proliferate, express the pluripotent SC markers OCT-4 and TERT, and differentiate in both osteogenic and smooth muscle lineages in vitro. However, AMSCs presented an earlier down-regulation of SC markers and a faster rate of differentiation. Thus, AMSCs and AFSCs may represent sources of characterized pluripotent SCs that can be easily collected and amplified in vitro. These ovine SCs may be used in preclinical studies on large animals to develop future human therapies.


PLOS ONE | 2013

Synthetic bone substitute engineered with amniotic epithelial cells enhances bone regeneration after maxillary sinus augmentation.

Barbara Barboni; Carlo Mangano; Luca Valbonetti; Giuseppe Marruchella; Paolo Berardinelli; Alessandra Martelli; Aurelio Muttini; Annunziata Mauro; Rossella Bedini; Maura Turriani; Raffaella Pecci; Delia Nardinocchi; Vincenzo Luca Zizzari; Stefano Tetè; Adriano Piattelli; Mauro Mattioli

Background Evidence has been provided that a cell-based therapy combined with the use of bioactive materials may significantly improve bone regeneration prior to dental implant, although the identification of an ideal source of progenitor/stem cells remains to be determined. Aim In the present research, the bone regenerative property of an emerging source of progenitor cells, the amniotic epithelial cells (AEC), loaded on a calcium-phosphate synthetic bone substitute, made by direct rapid prototyping (rPT) technique, was evaluated in an animal study. Material And Methods Two blocks of synthetic bone substitute (∼0.14 cm3), alone or engineered with 1×106 ovine AEC (oAEC), were grafted bilaterally into maxillary sinuses of six adult sheep, an animal model chosen for its high translational value in dentistry. The sheep were then randomly divided into two groups and sacrificed at 45 and 90 days post implantation (p.i.). Tissue regeneration was evaluated in the sinus explants by micro-computer tomography (micro-CT), morphological, morphometric and biochemical analyses. Results And Conclusions The obtained data suggest that scaffold integration and bone deposition are positively influenced by allotransplantated oAEC. Sinus explants derived from sheep grafted with oAEC engineered scaffolds displayed a reduced fibrotic reaction, a limited inflammatory response and an accelerated process of angiogenesis. In addition, the presence of oAEC significantly stimulated osteogenesis either by enhancing bone deposition or making more extent the foci of bone nucleation. Besides the modulatory role played by oAEC in the crucial events successfully guiding tissue regeneration (angiogenesis, vascular endothelial growth factor expression and inflammation), data provided herein show that oAEC were also able to directly participate in the process of bone deposition, as suggested by the presence of oAEC entrapped within the newly deposited osteoid matrix and by their ability to switch-on the expression of a specific bone-related protein (osteocalcin, OCN) when transplanted into host tissues.


Theriogenology | 2010

Extremely low frequency electromagnetic field exposure affects fertilization outcome in swine animal model

Nicola Bernabò; E. Tettamanti; Valentina Russo; Alessandra Martelli; Maura Turriani; M. Mattoli; Barbara Barboni

Modern society continuously exposes the population to electromagnetic radiation, the effects of which on human health, in particular reproduction, are still unknown. The aim of this research was to assess the effect of acute (1h) exposure of boar spermatozoa to a 50 Hz extremely low frequency electromagnetic field (ELF-EMF) on early fertility outcome. The effect of intensities ranging from 0 to 2 mT on morpho-functional integrity of capacitated spermatozoa was examined in vitro. The oviducts containing or without spermatozoa were then exposed to the minimum in vivo, TD(50,) and maximum intensities determined in vitro, 4h before ovulation. The effects of ELF-EMF on spermatozoa in terms of early embryo development were evaluated after 12h and 6 days. It was found that in vitro ELF-EMF > 0.5 mT induced a progressive acrosome damage, thus compromising the ability of spermatozoa to undergo acrosomal reaction after zona pellucida stimulation and reducing the in vitro fertilization outcome. These effects became evident at 0.75 mT and reached the plateau at 1 mT. Under in vivo conditions, the ELF-EMF intensity of 1 mT was able to compromise sperm function, significantly reducing the fertilization rate. In addition, the exposure of oviducts to fields > or = 0.75 mT in the absence of spermatozoa was able to negatively affect early embryo development. In fact, it was found to cause a slowdown in the embryo cleavage. In conclusion, it was demonstrated how and at which intensities ELF-EMF negatively affect early fertility outcome in a highly predictive animal model.


Cell Transplantation | 2012

Achilles Tendon Regeneration can be Improved by Amniotic Epithelial Cell Allotransplantation

Barbara Barboni; Valentina Russo; Valentina Curini; Annunziata Mauro; Alessandra Martelli; Aurelio Muttini; Nicola Bernabò; Luca Valbonetti; Marco Marchisio; O. Di Giacinto; Paolo Berardinelli; Mauro Mattioli

Amniotic epithelial cells (AECs) are ideal seed cells for tissue regeneration, but no research has yet been reported on their tendon regeneration potential. This study investigated the efficiency of AEC allotransplantation for tendon healing, as well as the mechanism involved. To this aim ovine AECs, characterized by specific surface and stemness markers (CD14-, CD31-, CD45-, CD49f, CD29, CD166, OCT4, SOX2, NANOG, TERT), were allotransplanted into experimentally induced tissue defects in sheep Achilles tendon. In situ tissue repair revealed that AEC-treated tendons had much better structural and mechanical recoveries than control ones during the early phase of healing. Immunohistochemical and biochemical analyses indicated that extracellular matrix remodeling was more rapid and that immature collagen fibers were completely replaced by mature ones in 28 days. Moreover, spatial–temporal analysis of cellularity, proliferation index, vascular area, and leukocyte infiltration revealed that AECs induced a specific centripetal healing process that first started in the tissue closer to the healthy portion of the tendons, where AECs rapidly migrated to then progress through the core of the lesion. This peculiar healing evolution could have been induced by the growth factor stimulatory influence (TGF-β1 and VEGF) and/or by the host progenitor cells recruitment, but also as the consequence of a direct tenogenic AEC differentiation resulting in the regeneration of new tendon matrix. These findings demonstrate that AECs can support tendon regeneration, and their effects may be used to develop future strategies to treat tendon disease characterized by a poor clinical outcome in veterinary medicine.


Stem Cell Reviews and Reports | 2014

Gestational stage affects amniotic epithelial cells phenotype, methylation status, immunomodulatory and stemness properties

Barbara Barboni; Valentina Russo; Valentina Curini; Alessandra Martelli; Paolo Berardinelli; Annunziata Mauro; Mauro Mattioli; Marco Marchisio; Patrizia Bonassi Signoroni; Ornella Parolini; Alessia Colosimo

Stem cells isolated from amniotic epithelium (AECs) have shown great potential in cell-based regenerative therapies. Because of their fetal origin, these cells exhibit elevated proliferation rates and plasticity, as well as, immune tolerance and anti-inflammatory properties. These inherent attitudes make AECs well-suited for both allogenic and xenogenic cellular transplants in animal models. Since in human only at term amnion is easily obtainable after childbirth, limited information are so far available concerning the phenotypic and functional difference between AECs isolated from early and late amnia. To this regard, the sheep animal model offers an undoubted advantage in allowing the easy collection of both types of AECs in large quantity. The aim of this study was to determine the effect of gestational age on ovine AECs (oAECs) phenotype, immunomodulatory properties, global DNA methylation status and pluripotent differentiation ability towards mesodermic and ectodermic lineages. The immunomodulatory property of oAECs in inhibiting lymphocyte proliferation was mainly unaffected by gestational age. Conversely, gestation considerably affected the expression of surface markers, as well the expression and localization of pluripotency markers. In detail, with progression of gestation the mRNA expression of NANOG and SOX2 markers was reduced, while the ones of TERT and OCT4A was unaltered; but at the end of gestation NANOG, SOX2 and TERT proteins mainly localized outside the nuclear compartment. Regarding the differentiation ability, LPL (adipogenic-specific gene) mRNA content significantly increased in oAECs isolated from early amnia, while OCN (osteogenic-specific gene) and NEFM (neurogenic-specific gene) mRNA content significantly increased in oAECs isolated from late amnia, suggesting that gestational stage affected cell plasticity. Finally, the degree of global DNA methylation increased with gestational age. All these results indicate that gestational age is a key factor capable of influencing morphological and functional properties of oAECs, and thus probably affecting the outcome of cell transplantation therapies.


Journal of Histochemistry and Cytochemistry | 2006

Expression of Telomerase Reverse Transcriptase Subunit (TERT) and Telomere Sizing in Pig Ovarian Follicles

Valentina Russo; Paolo Berardinelli; Alessandra Martelli; Oriana Di Giacinto; Delia Nardinocchi; Donatella Fantasia; Barbara Barboni

Telomerase is crucial for chromosome stability because it maintains telomere length. Little is known about telomerase in ovarian follicles, where an intense cell division is crucial to sustain estrous cycle and to drive oocyte development. The present research was performed to detect, by immunohistochemistry, the distribution of telomerase catalytic subunit (TERT) during folliculogenesis and to study the effect of TERT expression on telomeres. To this aim, telomere length has been measured on fluorescence in situ hybridization (FISH)-processed sections either in follicular or in germ cells. In primary and preantral follicles, TERT was observed in granulosa and in germ cells, with a typical nuclear location. During antral differentiation, only somatic cells close to the antrum (antral layer) and cumulus cells maintained TERT expression. The relative oocytes located TERT in the ooplasm independent from the process of meiotic maturation. FISH results indicate that a correlation exists between TERT expression and telomere size. In fact, progressively bigger telomeres were observed from preantral to antral follicles where longer structures were recorded in cells of the cumulus oophorus and of the antral layer than those of the basal one. Stable and elongated telomeres were detected in fully grown oocytes that lost the functional TERT distribution within the nucleus.


Reproduction | 2009

Vascular supply as a discriminating factor for pig preantral follicle selection.

Alessandra Martelli; Nicola Bernabò; Paolo Berardinelli; Valentina Russo; C. Rinaldi; O. Di Giacinto; Annunziata Mauro; Barbara Barboni

This research analyses how somatic and vascular compartments change during preantral follicle growth. To address this aim, theca-granulosa (somatic) proliferation indexes (PIs), proportion of proliferating endothelial cells (PE), vascular area (VA) and vascular endothelial growth factor A (VEGFA) expression were simultaneously recorded on single healthy preantral follicles, classified into six different stages on the basis of the diameter and the granulosa layers. An autonomous blood vessel network starts to appear only in class 3. Vascular remodelling requires VEGFA expression, and VEGFA mRNA and VA significantly increase between class 3 and classes 4 and 5 and, further, in class 6. In addition, a positive correlation exists between these parameters in classes 3-5. Despite variation in angiogenesis results from classes 3 to 5, the statistical analysis reveals that the vascular parameters are positively and strictly correlated with somatic PIs. Conversely, class 6, also characterized by higher values of somatic PIs, displays a stable proportion of PEs ( congruent with 40%) without showing any correlation among the different parameters analysed. To identify follicular subpopulations within different classes, a multivariate hierarchical cluster analysis was performed. This analysis reveals that the majority of classes 3 and 4 are quiescent follicles or structures that grow very slowly. Class 5 represents a transitory category, where half of the follicles maintain a low activity and the remaining express significantly higher levels of granulosa PI and VA. The follicles with this high activity are probably able to reach class 6 becoming dominant structures where somatic and vascular parameters are constantly on high levels and the VA remains the unique differentiating element.


Anatomia Histologia Embryologia | 2004

Colocalization of DNA fragmentation and caspase-3 activation during atresia in pig antral follicles.

Paolo Berardinelli; Valentina Russo; Alessandra Martelli; Delia Nardinocchi; O. Di Giacinto; Barbara Barboni; Mauro Mattioli

Apoptosis is the cellular mechanism of ovarian follicular atresia. The major downstream effector of this phenomenon in many tissues is caspase‐3 but little is known about its role in pig ovarian apoptosis. In the present study, we detected the localization of caspase‐3 in parallel with nuclear fragmentation (TUNEL) on healthy and early atretic antral follicles. In healthy antral follicles caspase‐3 and TUNEL positivity were occasionally recorded within theca layer. The incidence of DNA fragmentation, as indicated also by the biochemical detection, increased mainly in the granulosa layer of early atretic follicles. Quantitative analysis revealed, besides, that atresia was accompanied by a higher incidence of caspase‐3 (57.20 ± 20.05 versus 3.64 ± 0.61 positive cells in atretic versus healthy follicles, respectively; P < 0.05), of TUNEL positivity (20.13 ± 9.33 versus 0.42 ± 0.12; P < 0.05) and simultaneous immunostaining for caspase‐3 and TUNEL (15.02 ± 6.95 versus 0.31 ± 0.05; P < 0.05) in the granulosa layer. In detached granulosa cells isolated from the follicular fluid of early atretic follicles a further significantly increase was recorded in the percentage of TUNEL positivity and in the incidence of cells that showed colocalization of caspase‐3 activity and DNA fragmentation. Granulosa cells of early atretic follicles exhibited a higher positivity for caspase‐3 localized in the cytoplasm and occasionally in the nucleus area of granulosa cells. These results indicate that capsase‐3 was involved and precociously activated during the process of atresia. Finally, the progressively higher incidence of TUNEL positivity and of double immunostaining in atretic cells collected within the follicular fluid seems to indicate that proteases activity leads only tardily in a detectable DNA fragmentation.


Journal of Histochemistry and Cytochemistry | 2013

H3K9 Trimethylation Precedes DNA Methylation during Sheep Oogenesis: HDAC1, SUV39H1, G9a, HP1 and Dnmts Are Involved in These Epigenetic Events

Valentina Russo; Nicola Bernabò; Oriana Di Giacinto; Alessandra Martelli; Annunziata Mauro; Paolo Berardinelli; Valentina Curini; Delia Nardinocchi; Mauro Mattioli; Barbara Barboni

The oocyte, to become a fully mature gamete, has to acquire a correct pattern of DNA methylation on its genome; this epigenetic event represents the major point of the molecular mechanisms that occur during postnatal oogenesis. It is known that an intimate link exists between DNA methylation and histone posttranslational modifications, such as trimethylation of lysine 9 on histone 3 (H3K9me3), that is essential in the silencing of gene transcription. What remains unclear is the precise sequence of these two epigenetic events and the protein expression of the enzymes that catalyze this epigenetic maturation during oogenesis. To identify the key molecules involved in global DNA methylation and H3K9me3, a biological network-based computational model was realized. Then, the spatiotemporal distribution of the proteins, identified from the biological network, was assessed during postnatal oogenesis. The results obtained suggest the existence of a sequential cascade of events in which H3K9me3 is the primary step followed by DNA methylation. These two epigenetic marks are realized due to the recruitment of the HDAC1, SUV39H1, G9a, HP1, and Dnmt3a, which were always localized in the nuclei of the oocytes and were dependent on chromatin configuration. These results involving DNA methylation and H3K9me3 are crucial in defining the oocyte developmental competence.


Research in Veterinary Science | 2016

M1 and M2 macrophage recruitment during tendon regeneration induced by amniotic epithelial cell allotransplantation in ovine

Annunziata Mauro; Valentina Russo; Lisa Di Marcantonio; Paolo Berardinelli; Alessandra Martelli; Aurelio Muttini; Mauro Mattioli; Barbara Barboni

Recently, we have demonstrated that ovine amniotic epithelial cells (oAECs) allotransplanted into experimentally induced tendon lesions are able to stimulate tissue regeneration also by reducing leukocyte infiltration. Amongst leukocytes, macrophages (Mφ) M1 and M2 phenotype cells are known to mediate inflammatory and repairing processes, respectively. In this research it was investigated if, during tendon regeneration induced by AECs allotransplantation, M1Mφ and M2Mφ phenotype cells are recruited and differently distributed within the lesion site. Ovine AECs treated and untreated (Ctr) tendons were explanted at 7, 14, and 28 days and tissue microarchitecture was analyzed together with the distribution and quantification of leukocytes (CD45 positive), Mφ (CD68 pan positive), and M1Mφ (CD86, and IL12b) and M2Mφ (CD206, YM1 and IL10) phenotype related markers. In oAEC transplanted tendons CD45 and CD68 positive cells were always reduced in the lesion site. At day 14, oAEC treated tendons began to recover their microarchitecture, contextually a reduction of M1Mφ markers, mainly distributed close to oAECs, and an increase of M2Mφ markers was evidenced. CD206 positive cells were distributed near the regenerating areas. At day 28 oAECs treated tendons acquired a healthy-like structure with a reduction of M2Mφ. Differently, Ctr tendons maintained a disorganized morphology throughout the experimental time and constantly showed high values of M1Mφ markers. These findings indicate that M2Mφ recruitment could be correlated to tendon regeneration induced by oAECs allotransplantation. Moreover, these results demonstrate oAECs immunomodulatory role also in vivo and support novel insights into their allogeneic use underlying the resolution of tendon fibrosis.

Collaboration


Dive into the Alessandra Martelli's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge