Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alessandra Marti is active.

Publication


Featured researches published by Alessandra Marti.


Food Chemistry | 2012

Structure–quality relationship in commercial pasta: A molecular glimpse

Francesco Bonomi; Maria Grazia D’Egidio; Stefania Iametti; Mauro Marengo; Alessandra Marti; Maria Ambrogina Pagani; Enzio Ragg

Presence and stability of a protein network was evaluated by fluorescence spectroscopy, by protein solubility studies, and by assessing the accessibility of protein thiols in samples of commercial Italian semolina pasta made in industrial plants using different processes. The pasting properties of starch in each sample were evaluated by means of a viscoamylograph. Magnetic resonance imaging (MRI) was used to evaluate water distribution and water mobility in dry pasta, and at various cooking times. The molecular information derived from these studies was related to sensory indices, indicating that protein reticulation was dependent on the process conditions, which affected water penetration, distribution, and mobility during cooking. Products with a crosswise gradient of water mobility once cooked had the best sensory scores at optimal cooking time, whereas products with a less compact protein network performed better when slightly overcooked.


Food Chemistry | 2014

Spaghetti from durum wheat: Effect of drying conditions on heat damage, ultrastructure and in vitro digestibility

Milda Stuknytė; Stefano Cattaneo; Maria Ambrogina Pagani; Alessandra Marti; Valérie Micard; J.A. Hogenboom; Ivano De Noni

The effects of low (LT) or high (HT) temperature drying on ultrastructural, molecular and in vitro digestibility properties of cooked spaghetti were studied. Starch swelling and denaturation/aggregation of proteins occurring at diverse stages, LT or HT drying and cooking, resulted in different in vitro digestibility of spaghetti. For the first time, these differences were assessed in terms of the release of free AA and simple sugars. Indeed, at the end of in vitro digestion, the total amount of released maltotriose, maltose and glucose significantly differentiated digestates of LT and HT spaghetti (12.6 and 15.9 g 100g⁻¹). In the same samples, diverse amounts (16.3 and 12.5 g 100g⁻¹ protein) of free amino acids were found. Chemical artifacts occurring at protein level impaired release of lysine in cooked HT spaghetti after in vitro digestion. These results increase the knowledge on digestibility of LT and HT cooked spaghetti.


Carbohydrate Polymers | 2013

Process conditions affect starch structure and its interactions with proteins in rice pasta

Alberto Barbiroli; Francesco Bonomi; Maria Cristina Casiraghi; Stefania Iametti; Maria Ambrogina Pagani; Alessandra Marti

Structural changes of starch and proteins in rice pasta were investigated as a function of raw-materials and pasta-making conditions, and their impact on cooking behaviour and glycaemic index was assessed. Rice pasta was prepared from untreated or parboiled rice flour by conventional extrusion or by extrusion-cooking. Starch structure was studied by assessing starch accessibility to specific enzymes (α-amylase and pullulanase), and by evaluating the molecular properties of fragments from enzymatic action. Protein solubility in presence/absence of chaotropes and accessibility of protein cysteine thiols allowed to evaluate the intensity and nature of inter-protein interactions. Parboiling stiffens the protein network in rice flour and makes starch more accessible to hydrolysis. Pasta-making induced further changes in the starch structure, that were most evident in pasta made from untreated rice and were mainly related to the amylopectin fraction. Thus, the interplay among structural modifications on starch and/or proteins affects the features of products.


Cereal Chemistry | 2015

Characteristics of Perennial Wheatgrass (Thinopyrum intermedium) and Refined Wheat Flour Blends: Impact on Rheological Properties

Alessandra Marti; Xiaoxue Qiu; Tonya C. Schoenfuss; Koushik Seetharaman

Intermediate wheatgrass (IWG) (Thinopyrum intermedium) is a perennial grass with desirable agronomic traits and positive effects on the environment. It has high fiber and protein contents, which increase the interest in using IWG for human consumption. In this study, IWG flour was blended with refined wheat at four IWG-to-wheat ratios (0:100, 50:50, 75:25, and 100:0). Samples were analyzed for proximate composition, microstructure features, pasting properties (Micro Visco-Amylo-Graph device), protein solubility, and total and accessible thiols. Gluten aggregation properties (GlutoPeak tester) and mixing profile (Farinograph-AT device) were also evaluated. IWG flour enrichment increased the pasting temperature and decreased the peak viscosity of blended flours. IWG proteins exhibited higher solubility than wheat, with a high amount of accessible and total thiols. The GlutoPeak tester highlighted the ability of IWG proteins to aggregate and generate torque. Higher IWG flour enrichment resulted in faster glu...


Cereal Chemistry | 2014

Characterization of Durum Wheat Semolina by Means of a Rapid Shear-Based Method

Alessandra Marti; Cristina Cecchini; Maria Grazia D'Egidio; Jens Dreisoerner; Maria Ambrogina Pagani

ABSTRACT A rapid shear-based test (the GlutoPeak test, recently proposed by Brabender) was used to investigate gluten aggregation properties of durum wheat semolina and to relate them to pasta cooking behavior. Thirty semolina samples were characterized by means of the conventional approaches used for pasta-quality prediction (protein content, gluten index, and alveographic indices). All samples were also analyzed by the GlutoPeak test, obtaining three parameters: maximum peak torque, maximum peak time, and area under the peak. The GlutoPeak indices were significantly correlated with protein content, gluten index, and W alveographic parameter. The cooking quality of pasta obtained from the 30 semolina samples was evaluated by sensory analysis in terms of stickiness, bulkiness, firmness, and overall quality. The GlutoPeak indices were significantly correlated with the sensorial parameters. In comparison with the alveographic test, which is presently the most used rheological approach for semolina character...


Food Chemistry | 2016

Structural characterization of proteins in wheat flour doughs enriched with intermediate wheatgrass (Thinopyrum intermedium) flour

Alessandra Marti; Jayne E. Bock; Maria Ambrogina Pagani; Baraem Ismail; Koushik Seetharaman

The high protein and fiber content of intermediate wheatgrass (IWG) - together with its interesting agronomic traits and environment-related benefits - make this perennial crop attractive also for human consumption. Structural characteristics of the proteins in IWG/hard wheat flour (HWF) doughs (at IWG:HWF ratios of 0:100, 50:50, 75:25 and 100:0) - including aggregate formation, thiols availability, and secondary structure changes during dough mixing - were investigated. Proteins in IWG-doughs had higher solubility and thiol content - as function of IWG content - suggesting that protein network was mostly based on non-covalent interactions. While 50% IWG-enrichment gave an increase in random structures, enrichment at ⩾75% resulted in a decrease in β-sheets with an increase in random structures, indicating a decrease in structural order. The observed differences in protein molecular configuration and interactions in HWF compared to IWG doughs necessitate further investigation to establish their impact on the quality of IWG-enriched bread.


International Journal of Food Sciences and Nutrition | 2013

Quality and nutritional properties of pasta products enriched with immature wheat grain

Maria Cristina Casiraghi; Maria Ambrogina Pagani; Daniela Erba; Alessandra Marti; Cristina Cecchini; Maria Grazia D'Egidio

In this study, nutritional and sensory properties of pasta enriched with 30% immature wheat grain (IWG), a natural source of fructo-oligosaccharides (FOS), are evaluated. Colour and cooking quality, nutritional value and glycaemic index (GI) of pasta were assessed in comparison with commercially enriched inulin and 100% wholewheat pastas. IWG integration induced deep changes in colour, without negatively affecting the cooking quality of pasta, and promoted nutritional quality by increasing the fibre content; IWG pasta presented a remarkable leaching of FOS in cooking water, thus providing only 1 g of FOS per serving. IWG pastas showed a GI of 67 (dried) and 79 (fresh), not significantly different from commercial pasta products. IWG can be considered an interesting ingredient to obtain functional products ‘naturally enriched’ in FOS and fibre. Results about FOS leaching suggest that, in dealing with functional effects, the actual prebiotic content should be carefully considered on food ‘as eaten’.


Journal of Food Science | 2017

In Vitro Starch Digestibility of Commercial Gluten‐Free Pasta: The Role of Ingredients and Origin

Alessandra Marti; Parisa Abbasi Parizad; Mauro Marengo; Daniela Erba; Maria Ambrogina Pagani; Maria Cristina Casiraghi

Gluten replacement in gluten-free (GF) products presents major challenges for the food industry in terms of sensorial, technological and nutritional characteristics. The absence of gluten reportedly affects starch digestibility, thus increasing the postprandial glycaemic response. However, the role of ingredients and processing conditions has been addressed only seldom. We investigated the in vitro starch digestibility of 9 commercial GF products (5 Italian pasta and 4 Oriental noodles) differing in formulation and processing conditions. Content of rapidly digestible starch (RDS), slowly digestible starch (SDS), and resistant starch (RS) were assessed and combined with information on starch pasting properties and on the overall protein organization. Oriental noodles presented higher relative levels of RS and RDS than Western-style pasta, that often had SDS levels compatible with low rates of starch digestion. As regard formulation, presence of multiple ingredients seems to likely increase the RDS level, as did the different protein organization in the various samples.


Cereal Chemistry | 2016

Structural Modification of Gluten Proteins in Strong and Weak Wheat Dough as Affected by Mixing Temperature

Enoch T. Quayson; Alessandra Marti; Francesco Bonomi; William Atwell; Koushik Seetharaman

The effects of temperature (≥25°C) on dough rheological properties and gluten functionality have been investigated for decades, but no study has addressed the effect of low temperature (<30°C) on gluten network attributes in flours with strong and weak dough characteristics. This study monitored changes in protein extractability in the presence and absence of reducing agents, the contents of readily accessible and SDS-accessible thiols, and the secondary structural features of proteins in doughs from commercial hard wheat flour (HWF) and soft wheat flour (SWF) mixed at 4, 15, and 30°C. SWF mixed at 4 and 15°C showed similar mixing properties as HWF mixed at 30°C (which is the standard temperature). The effect of mixing temperature is different at the molecular level between the two flours studied. Protein features of HWF did not change as mixing temperature decreased, with the only exception being an increase in SDS-accessible thiols. Decreasing mixing temperature for SWF caused an increase in SDS protein...


Cereal Chemistry | 2017

Macromolecular and Micronutrient Profiles of Sprouted Chickpeas to Be Used for Integrating Cereal-Based Food

Mauro Marengo; Aristodemo Carpen; Francesco Bonomi; Maria Cristina Casiraghi; Erika Meroni; Lucio Quaglia; Stefania Iametti; Maria Ambrogina Pagani; Alessandra Marti

Pulse flour may be used to improve nutritional traits of gluten and gluten-free formulations in traditional food such as bread or pasta. However, owing to some intrinsic nutritional, textural, and sensory properties, the use of pulses as ingredients for production of enriched food remains limited. In this study, we investigated the modification in macromolecules and micronutrients in industrial-scale flour from partially sprouted chickpeas to define its possible use as an ingredient in cereal-based foods. Controlled sprouting resulted in significant decrease of antinutritional compounds (e.g., phytic acid and serine protease inhibitors) and in an increase of free minerals and vitamins. Sprouting also affected the overall structural organization of proteins (such as aggregate formation) and their thiol/disulfide balance, and it promoted release of peptides. All of these had a positive effect on dough mixing properties, in particular for dough development. Formulations with enrichment in sprouted chickpea f...

Collaboration


Dive into the Alessandra Marti's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

C. Gajadeera

University of Minnesota

View shared research outputs
Researchain Logo
Decentralizing Knowledge