Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alessandra Porzia is active.

Publication


Featured researches published by Alessandra Porzia.


PLOS ONE | 2009

The Prostate Specific Membrane Antigen Regulates the Expression of IL-6 and CCL5 in Prostate Tumour Cells by Activating the MAPK Pathways1

Marco Colombatti; Silvia Grasso; Alessandra Porzia; Giulio Fracasso; Maria Teresa Scupoli; Sara Cingarlini; Ornella Poffe; Hassan Y. Naim; Martin Heine; Giuseppe Tridente; Fabrizio Mainiero; Dunia Ramarli

The interleukin-6 (IL-6) and the chemokine CCL5 are implicated in the development and progression of several forms of tumours including that of the prostate. The expression of the prostate specific membrane antigen (PSMA) is augmented in high-grade and metastatic tumors. Observations of the clinical behaviour of prostate tumors suggest that the increased secretion of IL-6 and CCL5 and the higher expression of PSMA may be correlated. We hypothesized that PSMA could be endowed with signalling properties and that its stimulation might impact on the regulation of the gene expression of IL-6 and CCL5. We herein demonstrate that the cross-linking of cell surface PSMA with specific antibodies activates the small GTPases RAS and RAC1 and the MAPKs p38 and ERK1/2 in prostate carcinoma LNCaP cells. As downstream effects of the PSMA-fostered RAS-RAC1-MAPK pathway activation we observed a strong induction of NF-κB activation associated with an increased expression of IL-6 and CCL5 genes. Pharmacological blockade with specific inhibitors revealed that both p38 and ERK1/2 participate in the phenomenon, although a major role exerted by p38 was evident. Finally we demonstrate that IL-6 and CCL5 enhanced the proliferative potential of LNCaP cells synergistically and in a dose-dependent manner and that CCL5 functioned by receptor-mediated activation of the STAT5-Cyclin D1 pro-proliferative pathway. The novel functions attributable to PSMA which are described in the present report may have profound influence on the survival and proliferation of prostate tumor cells, accounting for the observation that PSMA overexpression in prostate cancer patients is related to a worse prognosis.


Nature Communications | 2015

Enriched environment reduces glioma growth through immune and non-immune mechanisms in mice

Stefano Garofalo; Giuseppina D'Alessandro; Giuseppina Chece; Frédéric Brau; Laura Maggi; Alessandro Rosa; Alessandra Porzia; Fabrizio Mainiero; Vincenzo Esposito; Clotilde Lauro; Giorgia Benigni; Giovanni Bernardini; Angela Santoni; Cristina Limatola

Mice exposed to standard (SE) or enriched environment (EE) were transplanted with murine or human glioma cells and differences in tumour development were evaluated. We report that EE exposure affects: (i) tumour size, increasing mice survival; (ii) glioma establishment, proliferation and invasion; (iii) microglia/macrophage (M/Mφ) activation; (iv) natural killer (NK) cell infiltration and activation; and (v) cerebral levels of IL-15 and BDNF. Direct infusion of IL-15 or BDNF in the brain of mice transplanted with glioma significantly reduces tumour growth. We demonstrate that brain infusion of IL-15 increases the frequency of NK cell infiltrating the tumour and that NK cell depletion reduces the efficacy of EE and IL-15 on tumour size and of EE on mice survival. BDNF infusion reduces M/Mφ infiltration and CD68 immunoreactivity in tumour mass and reduces glioma migration inhibiting the small G protein RhoA through the truncated TrkB.T1 receptor. These results suggest alternative approaches for glioma treatment.


PLOS ONE | 2013

Functional Cross Talk between CXCR4 and PDGFR on Glioblastoma Cells Is Essential for Migration

Miriam Sciaccaluga; Giuseppina D’Alessandro; Francesca Pagani; Giuseppina Ferrara; Tracy Warr; Paolo Gorello; Alessandra Porzia; Fabrizio Mainiero; Antonio Santoro; Vincenzo Esposito; Giampaolo Cantore; Emilia Castigli; Cristina Limatola

Glioblastoma (GBM) is the most common and aggressive form of brain tumor, characterized by high migratory behavior and infiltration in brain parenchyma which render classic therapeutic approach ineffective. The migratory behaviour of GBM cells could be conditioned by a number of tissue- and glioma-derived cytokines and growth factors. Although the pro-migratory action of CXCL12 on GBM cells in vitro and in vivo is recognized, the molecular mechanisms involved are not clearly identified. In fact the signaling pathways involved in the pro-migratory action of CXCL12 may differ in individual glioblastoma and integrate with those resulting from abnormal expression and activation of growth factor receptors. In this study we investigated whether some of the receptor tyrosine kinases commonly expressed in GBM cells could cooperate with CXCL12/CXCR4 in their migratory behavior. Our results show a functional cross-talk between CXCR4 and PDGFR which appears to be essential for GBM chemotaxis.


Frontiers in Cellular Neuroscience | 2015

Defective microglial development in the hippocampus of Cx3cr1 deficient mice

Francesca Pagani; Rosa C. Paolicelli; Emanuele Murana; Barbara Cortese; Silvia Di Angelantonio; Emanuele Zurolo; Eva Guiducci; Tiago A. Ferreira; Stefano Garofalo; Myriam Catalano; Giuseppina D’Alessandro; Alessandra Porzia; Giovanna Peruzzi; Fabrizio Mainiero; Cristina Limatola; Cornelius Gross; Davide Ragozzino

Microglial cells participate in brain development and influence neuronal loss and synaptic maturation. Fractalkine is an important neuronal chemokine whose expression increases during development and that can influence microglia function via the fractalkine receptor, CX3CR1. Mice lacking Cx3cr1 show a variety of neuronal defects thought to be the result of deficient microglia function. Activation of CX3CR1 is important for the proper migration of microglia to sites of injury and into the brain during development. However, little is known about how fractalkine modulates microglial properties during development. Here we examined microglial morphology, response to ATP, and K+ current properties in acute brain slices from Cx3cr1 knockout mice across postnatal hippocampal development. We found that fractalkine signaling is necessary for the development of several morphological and physiological features of microglia. Specifically, we found that the occurrence of an outward rectifying K+ current, typical of activated microglia, that peaked during the second and third postnatal week, was reduced in Cx3cr1 knockout mice. Fractalkine signaling also influenced microglial morphology and ability to extend processes in response to ATP following its focal application to the slice. Our results reveal the developmental profile of several morphological and physiological properties of microglia and demonstrate that these processes are modulated by fractalkine signaling.


Frontiers in Cellular Neuroscience | 2014

Trasmembrane chemokines CX3CL1 and CXCL16 drive interplay between neurons, microglia and astrocytes to counteract pMCAO and excitotoxic neuronal death

Maria Rosito; Clotilde Lauro; Giuseppina Chece; Alessandra Porzia; Lucia Monaco; Fabrizio Mainiero; Myriam Catalano; Cristina Limatola; Flavia Trettel

Upon noxious insults, cells of the brain parenchyma activate endogenous self-protective mechanisms to counteract brain damage. Interplay between microglia and astrocytes can be determinant to build a physiological response to noxious stimuli arisen from injury or stress, thus understanding the cross talk between microglia and astrocytes would be helpful to elucidate the role of glial cells in endogenous protective mechanisms and might contribute to the development of new strategy to mobilize such program and reduce brain cell death. Here we demonstrate that chemokines CX3CL1 and CXCL16 are molecular players that synergistically drive cross-talk between neurons, microglia and astrocytes to promote physiological neuroprotective mechanisms that counteract neuronal cell death due to ischemic and excitotoxic insults. In an in vivo model of permanent middle cerebral artery occlusion (pMCAO) we found that exogenous administration of soluble CXCL16 reduces ischemic volume and that, upon pMCAO, endogenous CXCL16 signaling restrains brain damage, being ischemic volume reduced in mice that lack CXCL16 receptor. We demonstrated that CX3CL1, acting on microglia, elicits CXCL16 release from glia and this is important to induce neroprotection since lack of CXCL16 signaling impairs CX3CL1 neuroprotection against both in vitro Glu-excitotoxic insult and pMCAO. Moreover the activity of adenosine receptor A3R and the astrocytic release of CCL2 play also a role in trasmembrane chemokine neuroprotective effect, since their inactivation reduces CX3CL1- and CXCL16 induced neuroprotection.


Journal of Immunology | 2010

Attenuation of PI3K/Akt-Mediated Tumorigenic Signals through PTEN Activation by DNA Vaccine-Induced Anti-ErbB2 Antibodies

Alessandra Porzia; Stefania Lanzardo; Arianna Citti; Federica Cavallo; Guido Forni; Angela Santoni; Ricciarda Galandrini; Rossella Paolini

By studying BALB/c mice deficient in immune components, we show that the protective immunity to rat ErbB2+ tumors rests on the Ab response elicited by the electroporation of a DNA vaccine encoding the extracellular and transmembrane domains of rat ErbB2. In vivo, the adoptive transfer of vaccine-elicited anti-rat ErbB2 Abs protected against a challenge of rat ErbB2+ carcinoma cells (TUBO cells). In vitro, such Abs inhibited TUBO cell growth by impairing cell cycle progression and inducing apoptosis. To correlate intrinsic mechanisms of Ab action with their tumor-inhibitory potential, first we showed that TUBO cells constitutively express phosphorylated transgenic ErbB2/autochthonous ErbB3 heterodimers and exhibit a basal level of Akt phosphorylation, suggesting a constitutive activation of the PI3K/Akt pathway. Treatment with anti-ErbB2 Abs caused a drastic reduction in the basal level of Akt phosphorylation in the absence of an impairment of PI3K enzymatic activity. Notably, the same Ab treatment induced an increase in PTEN phosphatase activity that correlated with a reduced PTEN phosphorylation. In conclusion, vaccine-induced anti-ErbB2 Abs directly affected the transformed phenotype of rat ErbB2+ tumors by impairing ErbB2-mediated PI3K/Akt signaling.


British Journal of Haematology | 2005

FLT3 inhibition in t(4;11)+ adult acute lymphoid leukaemia

Giovanni Fernando Torelli; Anna Guarini; Alessandra Porzia; Sabina Chiaretti; Caterina Tatarelli; Daniela Diverio; Roberta Maggio; Antonella Vitale; Jerome Ritz; Robin Foà

The present study was designed to investigate, in t(4;11)+ adult lymphoid leukaemia (ALL) blast cells, the pathogenetic role of the FLT3 protein, its level of mRNA and protein expression, the degree of constitutive phosphorylation, the possible presence of mutations of the sequence, the capacity of signal transduction and the potential therapeutic role of specific inhibitors. We evaluated nine adult ALL patients carrying this translocation. The increased FLT3 mRNA levels, determined by oligonucleotide microarray analysis, was in agreement with the increased protein expression evaluated by Western blot. The protein was constitutively phosphorylated in all cases analysed. Polymerase chain reaction detected no internal tandem duplication or point mutations. The signal transduction apparatus, after stimulation with the specific ligand, was preserved. We then investigated the effect of specific FLT3 inhibition on signal transduction and survival. The PKC412 inhibitor specifically inhibited ligand‐induced phosphorylation; the same inhibitor reduced the survival of leukaemic cells when compared with untreated cells. These data indicate that the FLT3 protein might play a role in this subgroup of ALL with a particularly poor prognosis. Specific inhibition of the kinase receptor must be hypothesised as an innovative therapeutic tool for t(4;11)+ ALL patients.


American Journal of Rhinology & Allergy | 2016

Local Allergic Rhinitis in Children: Novel Diagnostic Features and Potential Biomarkers

Anna Maria Zicari; Francesca Occasi; Marco Di Fraia; Fabrizio Mainiero; Alessandra Porzia; Ricciarda Galandrini; Anna Giuffrida; Daniela Bosco; Serena Bertin; Marzia Duse

Background Local allergic rhinitis (LAR) is a phenotype of rhinitis that has been poorly studied in children. It is characterized by the same symptoms of allergic rhinitis but with the absence of markers of systemic atopy. Objective To identify children affected by LAR and to analyze the pathogenesis of this disease. We chose to focus our attention on interleukin (IL) and thymic stromal lymphopoietin (TSLP). Methods We enrolled 20 children affected by nonallergic rhinitis (negative skin-prick test results and serum specific immunoglobulin E [sIgE] values). Each patient underwent a nasal allergen provocation test (NAPT) with dust mite and grass pollen. Before and after NAPT, nasal lavage was performed to detect sIgE, IL-5, and TSLP; anterior active rhinomanometry was used to evaluate changes in nasal obstruction. Results Two patients were positive to a nonspecific NAPT and, thus, were excluded from the study. Of the remaining 18 children, 12 (66.7%) had positive results to at least one NAPT. Among these 12 patients, nasal sIgE levels for Dermatophagoides pteronyssinus, Dermatophagoides farinae, and Lolium perenne increased significantly after NAPT (D. pteronyssinus, p < 0.005; D. farinae, p < 0.05; L. perenne, p < 0.05). Nasal IL-5 levels showed a significant increase after NAPT (p ≤ 0.006), and this increase was significantly higher in children who had positive NAPT results than in those patients with negative NAPT results (p ≤ 0.03). Among the 12 children who had a positive NAPT result, nasal TSLP was detected in 4 patients (33.3%) and its levels showed a relevant increase after NAPT, even though the difference did not reach statistical significance (p ≤ 0.061). Conclusion Observed results raise the importance of better refining the diagnostic protocol for LAR in children. Nasal TSLP and IL-5 levels offer new insights concerning localized allergic inflammation, although the role of nasal sIgE has still to be clarified.


OncoImmunology | 2015

Tumor-associated and immunochemotherapy-dependent long-term alterations of the peripheral blood NK cell compartment in DLBCL patients

M. Christina Cox; Simone Battella; Raffaella La Scaleia; Sabrina Pelliccia; Arianna Di Napoli; Alessandra Porzia; Francesca Cecere; Eleonora Alma; Alessandra Zingoni; Fabrizio Mainiero; Luigi Ruco; Bruno Monarca; Angela Santoni; Gabriella Palmieri

Natural Killer (NK) cells are a key component of tumor immunosurveillance and thus play an important role in rituximab-dependent killing of lymphoma cells via an antibody-dependent cellular cytotoxicity (ADCC) mechanism. We evaluated the phenotypic and functional assets of peripheral blood NK cell subsets in 32 newly-diagnosed diffuse large B-cell lymphoma (DLBCL) patients and in 27 healthy controls. We further monitored long-term modifications of patient NK cells for up to 12 months after rituximab-based immunochemotherapy. At diagnosis, patients showed a higher percentage of CD56dim and CD16+ NK cells, and a higher frequency of GrzB+ cells in CD56dim, CD56bright, and CD16+ NK cell subsets than healthy controls. Conversely, DLBCL NK cell killing and interferon γ (IFNγ) production capability were comparable to those derived from healthy subjects. Notably, NK cells from refractory/relapsed patients exhibited a lower “natural” cytotoxicity. A marked and prolonged therapy-induced reduction of both “natural” and CD16-dependent NK cytotoxic activities was accompanied by the down-modulation of CD16 and NKG2D activating receptors, particularly in the CD56dim subset. However, reduced NK cell killing was not associated with defective lytic granule content or IFNγ production capability. This study firstly describes tumor-associated and therapy-induced alterations of the systemic NK cell compartment in DLBCL patients. As these alterations may negatively impact rituximab-based therapy efficacy, our work may provide useful information for improving immunochemotherapeutic strategies.


Pancreas | 2015

Effect of Surgery on Pancreatic Tumor-Dependent Lymphocyte Asset: Modulation of Natural Killer Cell Frequency and Cytotoxic Function

Francesco Iannone; Alessandra Porzia; Giovanna Peruzzi; Patrizia Birarelli; Bernardina Milana; Luca Sacco; Giuseppe Dinatale; Nadia Peparini; Giampaolo Prezioso; Simone Battella; Roberto Caronna; Stefania Morrone; Gabriella Palmieri; Fabrizio Mainiero; Piero Chirletti

Objectives Tumor burden and invasiveness establish a microenvironment that surgery could alter. This study shows a comprehensive analysis of size, dynamics, and function of peripheral lymphocyte subsets in pancreatic cancer patients before and at different times after duodenopancreatectomy. Methods Lymphocyte frequency and natural cytotoxicity were evaluated by flow cytometry and in vitro assay on peripheral blood from initial and advanced-stage pancreatic cancer patients before (BS), at day 7 (PS7), and at day 30 (PS30) after surgery. Results An increase in natural killer (NK) cells and the diminution of B-cells occurred at PS30, whereas cytotoxicity decreased at PS7. The positive correlation between NK frequency and cytotoxicity at BS and PS7 revealed an altered NK behavior. The elevation of NK cell frequency at PS30, an initial defect in CD56bright NK, and the aberrant correlation between NK frequency and cytotoxicity remained significant in advanced-stage patients, whereas the diminution of NK cytotoxicity only affected initial stage patients. Conclusions The NK cell functional ability is altered in presurgery patients; duodenopancreatectomy is associated with short-term impairment of NK function and with a long-term NK cell augmentation and reversion of the aberrant NK behavior, which may impact on immunosurveillance against residual cancer.

Collaboration


Dive into the Alessandra Porzia's collaboration.

Top Co-Authors

Avatar

Fabrizio Mainiero

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar

Angela Santoni

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar

Cristina Limatola

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar

Simone Battella

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar

Gabriella Palmieri

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar

Giuseppina Chece

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar

Luigi Ruco

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Stefano Garofalo

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar

Vincenzo Esposito

Sapienza University of Rome

View shared research outputs
Researchain Logo
Decentralizing Knowledge