Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alessandra Rotundi is active.

Publication


Featured researches published by Alessandra Rotundi.


Science | 2006

Organics captured from comet 81P/Wild 2 by the Stardust spacecraft

Scott A. Sandford; Jérôme Aléon; Conel M. Od. Alexander; Tohru Araki; Sas̆a Bajt; G. A. Baratta; Janet Borg; John P. Bradley; D. E. Brownlee; John Robert Brucato; Mark J. Burchell; Henner Busemann; Anna L. Butterworth; Simon J. Clemett; George D. Cody; L. Colangeli; George Cooper; Louis D'Hendecourt; Zahia Djouadi; Jason P. Dworkin; Gianluca Ferrini; Holger Fleckenstein; G. J. Flynn; Ian A. Franchi; Marc Douglas Fries; Mary K. Gilles; Daniel P. Glavin; Matthieu Gounelle; Faustine Grossemy; Chris Jacobsen

Organics found in comet 81P/Wild 2 samples show a heterogeneous and unequilibrated distribution in abundance and composition. Some organics are similar, but not identical, to those in interplanetary dust particles and carbonaceous meteorites. A class of aromatic-poor organic material is also present. The organics are rich in oxygen and nitrogen compared with meteoritic organics. Aromatic compounds are present, but the samples tend to be relatively poorer in aromatics than are meteorites and interplanetary dust particles. The presence of deuterium and nitrogen-15 excesses suggest that some organics have an interstellar/protostellar heritage. Although the variable extent of modification of these materials by impact capture is not yet fully constrained, a diverse suite of organic compounds is present and identifiable within the returned samples.


Science | 2015

Dust measurements in the coma of comet 67P/Churyumov-Gerasimenko inbound to the Sun

Alessandra Rotundi; H. Sierks; Vincenzo Della Corte; M. Fulle; Pedro J. Gutierrez; Luisa M. Lara; Cesare Barbieri; P. L. Lamy; R. Rodrigo; D. Koschny; Hans Rickman; H. U. Keller; José Juan López-Moreno; Mario Accolla; Jessica Agarwal; Michael F. A’Hearn; Nicolas Altobelli; F. Angrilli; M. Antonietta Barucci; Jean-Loup Bertaux; I. Bertini; D. Bodewits; E. Bussoletti; L. Colangeli; Massimo Cosi; G. Cremonese; J.-F. Crifo; Vania Da Deppo; B. Davidsson; Stefano Debei

Critical measurements for understanding accretion and the dust/gas ratio in the solar nebula, where planets were forming 4.5 billion years ago, are being obtained by the GIADA (Grain Impact Analyser and Dust Accumulator) experiment on the European Space Agency’s Rosetta spacecraft orbiting comet 67P/Churyumov-Gerasimenko. Between 3.6 and 3.4 astronomical units inbound, GIADA and OSIRIS (Optical, Spectroscopic, and Infrared Remote Imaging System) detected 35 outflowing grains of mass 10−10 to 10−7 kilograms, and 48 grains of mass 10−5 to 10−2 kilograms, respectively. Combined with gas data from the MIRO (Microwave Instrument for the Rosetta Orbiter) and ROSINA (Rosetta Orbiter Spectrometer for Ion and Neutral Analysis) instruments, we find a dust/gas mass ratio of 4 ± 2 averaged over the sunlit nucleus surface. A cloud of larger grains also encircles the nucleus in bound orbits from the previous perihelion. The largest orbiting clumps are meter-sized, confirming the dust/gas ratio of 3 inferred at perihelion from models of dust comae and trails.


The Astrophysical Journal | 1998

Temperature Dependence of the Absorption Coefficient of Cosmic Analog Grains in the Wavelength Range 20 Microns to 2 Millimeters

V. Mennella; John Robert Brucato; L. Colangeli; P. Palumbo; Alessandra Rotundi; E. Bussoletti

We have measured the absorption coefficient per unit mass of cosmic dust analog grains, crystalline fayalite and forsterite, amorphous fayalite, and two kinds of disordered carbon grains, between 20 μm and 2 mm over the temperature range 295-24 K. The results provide evidence of a significant dependence on temperature. The opacity systematically decreases with decreasing temperature; at 1 mm, it varies by a factor of between 1.9 and 5.8, depending on the material, from room temperature to 24 K. The variations are more marked for the amorphous grains. The wavelength dependence of the absorption coefficient is well fitted by a power law with exponent β that varies with temperature. For the two amorphous carbons, β(24 K) ~1.2 with increases of 24% and 50% with respect to the room-temperature values. A 50% increase is found for amorphous fayalite, characterized by β(24 K) = 2. A less pronounced change of β with temperature, 14% and 10%, is observed for crystalline forsterite, β(24 K) = 2.2, and fayalite, β(24 K) = 2.3, respectively. For amorphous fayalite grains, the millimeter opacity at 24 K is larger by a factor of ~4 than that of the crystalline counterpart. In addition, a temperature dependence of the infrared bands present in the spectrum of the two crystalline silicates is found. The features become more intense, sharpen, and shift to slightly higher frequencies with decreasing temperature. The results are discussed in terms of intrinsic far-infrared-millimeter absorption mechanisms. The linear dependence of the millimeter absorption on temperature suggests that two-phonon difference processes play a dominant role. The absorption coefficients reported in this work can be useful in obtaining a more realistic simulation of a variety of astronomical data concerning dust at low temperatures and give hints to better identify its actual properties. In particular, they are used to discuss the origin of the diffuse far-infrared-millimeter interstellar dust emission spectrum. It is proposed that composite particles formed of silicate and amorphous carbon grains can reproduce the observations. The presence of these particles in the diffuse medium is consistent with the recent interstellar extinction model by Mathis.


Science | 2006

Infrared Spectroscopy of Comet 81P/Wild 2 Samples Returned by Stardust

Lindsay P. Keller; Sasa Bajt; G. A. Baratta; Janet Borg; John P. Bradley; D. E. Brownlee; Henner Busemann; John Robert Brucato; Mark J. Burchell; L. Colangeli; Louis D'Hendecourt; Zahia Djouadi; Gianluca Ferrini; G. J. Flynn; Ian A. Franchi; Marc Douglas Fries; Monica M. Grady; Giles A. Graham; Faustine Grossemy; Anton T. Kearsley; Graciela Matrajt; Keiko Nakamura-Messenger; V. Mennella; Larry R. Nittler; M. E. Palumbo; Frank J. Stadermann; Peter Tsou; Alessandra Rotundi; Scott A. Sandford; Christopher J. Snead

Infrared spectra of material captured from comet 81P/Wild 2 by the Stardust spacecraft reveal indigenous aliphatic hydrocarbons similar to those in interplanetary dust particles thought to be derived from comets, but with longer chain lengths than those observed in the diffuse interstellar medium. Similarly, the Stardust samples contain abundant amorphous silicates in addition to crystalline silicates such as olivine and pyroxene. The presence of crystalline silicates in Wild 2 is consistent with mixing of solar system and interstellar matter. No hydrous silicates or carbonate minerals were detected, which suggests a lack of aqueous processing of Wild 2 dust.


The Astrophysical Journal | 2015

DENSITY AND CHARGE of PRISTINE FLUFFY PARTICLES FROM COMET 67P/CHURYUMOV-GERASIMENKO

M. Fulle; V. Della Corte; Alessandra Rotundi; Paul R. Weissman; A. Juhasz; K. Szego; R. Sordini; M. Ferrari; S. Ivanovski; F. Lucarelli; M. Accolla; S. Merouane; V. Zakharov; E. Mazzotta Epifani; J. J. Lopez-Moreno; J. Rodriguez; L. Colangeli; P. Palumbo; E. Grün; M. Hilchenbach; E. Bussoletti; F. Esposito; Simon F. Green; P. L. Lamy; J. A. M. McDonnell; V. Mennella; A. Molina; Rafael Talero Morales; F. Moreno; J. L. Ortiz

The Grain Impact Analyzer and Dust Accumulator (GIADA) instrument on board ESA’s Rosetta mission is constraining the origin of the dust particles detected within the coma of comet 67 P/Churyumov–Gerasimenko (67P). The collected particles belong to two families: (i) compact particles (ranging in size from 0.03 to 1 mm), witnessing the presence of materials that underwent processing within the solar nebula and (ii) fluffy aggregates (ranging in size from 0.2 to 2.5 mm) of sub-micron grains that may be a record of a primitive component, probably linked to interstellar dust. The dynamics of the fluffy aggregates constrain their equivalent bulk density to <1 kg m-3. These aggregates are charged, fragmented, and decelerated by the spacecraft negative potential and enter GIADA in showers of fragments at speeds <1 m s-1. The density of such optically thick aggregates is consistent with the low bulk density of the nucleus. The mass contribution of the fluffy aggregates to the refractory component of the nucleus is negligible and their coma brightness contribution is less than 15%.


The Astrophysical Journal | 1998

A New Approach to the Puzzle of the Ultraviolet Interstellar Extinction Bump

V. Mennella; L. Colangeli; E. Bussoletti; P. Palumbo; Alessandra Rotundi

We present a model that is able to shed light on the long-standing problem of the attribution of the UV interstellar extinction band at 4.6 μm. The model relies on a basic physical description of the electronic structure of carbon materials and is supported by laboratory simulations of UV processing of interstellar grains. The UV bump is attributed to a population of nano-sized, UV-processed hydrogenated amorphous carbon grains: the bump carrier carbons (BCCs). Specifically, we model the feature with a linear combination of absorption from different BCC populations present in interstellar regions sampled along a line of sight. The observed bump width variations are the result of different contributions of BCC grains along different lines of sight. The absorption from less processed particles prevails for wider bumps (denser regions), while more processed grains dominate in the case of sharper features (diffuse medium).


Astronomy and Astrophysics | 2010

Comet 67P/Churyumov-Gerasimenko: the GIADA dust environment model of the Rosetta mission target

M. Fulle; L. Colangeli; Jessica Agarwal; A. Aronica; V. Della Corte; F. Esposito; E. Grün; Masateru Ishiguro; Rolando Ligustri; J. J. Lopez Moreno; E. Mazzotta Epifani; G. Milani; F. Moreno; P. Palumbo; J. Rodríguez Gómez; Alessandra Rotundi

Context. The ESA Rosetta spacecraft will reach the short-period comet 67P/Churyumov-Gerasimenko in 2014. Orbiting strategy, orbiter safety conditions, landing scenarios and expected results from dust collectors depend on models of the 67P dust environment. Many papers already tackled this matter, analysing a limited set of observations, and therefore often reaching conflicting conclusions. Aims. We consider a set of observations representative of all ground-based and IR (thermal infrared) Spitzer data collected over the last three perihelion passages, to determine the 67P dust environment after the end of the gas drag on dust (at about 20 nucleus radii) consistent with available 67P gas and dust coma photometry, images of the dust coma, tail and trail, at optical and IR wavelengths. Methods. In order to obtain the best fit to 67P data, we consider three independent tail and trail simulation codes (developed by three independent groups), which parametrise cometary dust by the quantity β, the ratio between solar radiation pressure and gravity forces. GIADA, the dust monitor instrument of the Rosetta orbiter, will provide an experimental determination of the β-dust mass relation. Results. A 67P environment model based on a perihelion-symmetric dust velocity and on a perihelion-asymmetric dust size distribution, is consistent with all available data. During most Rosetta operations, the dust cross-section is dominated by mm to cm-sized grains, while the ejected dust mass is dominated by grains larger than a few mm, with a dust-to-gas ratio of 3 around perihelion. Conclusions. 67P onsets its activity at Sun-distances rh ≥ 3.4 AU; the dust geometric albedo is 0.04 ± 0.02; at 3.0 AU, 10 g grains escape the nucleus gravity field (10 kg grains at perihelion) with a dust mass-loss rate of 10−40 kg s −1 (500 kg s −1 at perihelion); 67P’s activity depends on seasons, with the northern heminucleus (rich in large grains and CN depleted) active before perihelion.


The Astrophysical Journal | 2016

Evolution of the Dust Size Distribution of Comet 67P/Churyumov–Gerasimenko from 2.2 au to Perihelion

M. Fulle; Francesco Marzari; V. Della Corte; S. Fornasier; H. Sierks; Alessandra Rotundi; Cesare Barbieri; P. L. Lamy; R. Rodrigo; D. Koschny; Hans Rickman; H. U. Keller; J. J. Lopez-Moreno; M. Accolla; Jessica Agarwal; Michael F. A’Hearn; Nicolas Altobelli; M. A. Barucci; J.-L. Bertaux; I. Bertini; D. Bodewits; E. Bussoletti; L. Colangeli; Massimo Cosi; G. Cremonese; J.-F. Crifo; V. Da Deppo; B. Davidsson; Stefano Debei; M. De Cecco

The Rosetta probe, orbiting Jupiter-family comet 67P/Churyumov–Gerasimenko, has been detecting individual dust particles of mass larger than 10−10 kg by means of the GIADA dust collector and the OSIRIS Wide Angle Camera and Narrow Angle Camera since 2014 August and will continue until 2016 September. Detections of single dust particles allow us to estimate the anisotropic dust flux from 67P, infer the dust loss rate and size distribution at the surface of the sunlit nucleus, and see whether the dust size distribution of 67P evolves in time. The velocity of the Rosetta orbiter, relative to 67P, is much lower than the dust velocity measured by GIADA, thus dust counts when GIADA is nadir-pointing will directly provide the dust flux. In OSIRIS observations, the dust flux is derived from the measurement of the dust space density close to the spacecraft. Under the assumption of radial expansion of the dust, observations in the nadir direction provide the distance of the particles by measuring their trail length, with a parallax baseline determined by the motion of the spacecraft. The dust size distribution at sizes >1 mm observed by OSIRIS is consistent with a differential power index of −4, which was derived from models of 67Ps trail. At sizes <1 mm, the size distribution observed by GIADA shows a strong time evolution, with a differential power index drifting from −2 beyond 2 au to −3.7 at perihelion, in agreement with the evolution derived from coma and tail models based on ground-based data. The refractory-to-water mass ratio of the nucleus is close to six during the entire inbound orbit and at perihelion.


Astronomy and Astrophysics | 2015

GIADA: shining a light on the monitoring of the comet dust production from the nucleus of 67P/Churyumov-Gerasimenko

V. Della Corte; Alessandra Rotundi; M. Fulle; E. Gruen; P. Weissmann; R. Sordini; M. Ferrari; S. Ivanovski; F. Lucarelli; M. Accolla; V. Zakharov; E. Mazzotta Epifani; J. J. Lopez-Moreno; J. Rodriguez; L. Colangeli; P. Palumbo; E. Bussoletti; J.-F. Crifo; F. Esposito; Simon F. Green; P. L. Lamy; J. A. M. McDonnell; V. Mennella; A. Molina; Rafael Talero Morales; F. Moreno; J. L. Ortiz; E. Palomba; Jean-Marie Perrin; Frans J. M. Rietmeijer

During the period between 15 September 2014 and 4 February 2015, the Rosetta spacecraft accomplished the circular orbit phase around the nucleus of comet 67P/Churyumov-Gerasimenko (67P). The Grain Impact Analyzer and Dust Accumulator (GIADA) onboard Rosetta moni- tored the 67P coma dust environment for the entire period. Aims. We aim to describe the dust spatial distribution in the coma of comet 67P by means of in situ measurements. We determine dynamical and physical properties of cometary dust particles to support the study of the production process and dust environment modification. Methods. We analyzed GIADA data with respect to the observation geometry and heliocentric distance to describe the coma dust spatial distribu- tion of 67P, to monitor its activity, and to retrieve information on active areas present on its nucleus. We combined GIADA detection information with calibration activity to distinguish different types of particles that populate the coma of 67P: compact particles and fluffy porous aggregates. By means of particle dynamical parameters measured by GIADA, we studied the dust acceleration region. Results. GIADA was able to distinguish different types of particles populating the coma of 67P: compact particles and fluffy porous aggregates. Most of the compact particle detections occurred at latitudes and longitudes where the spacecraft was in view of the comet’s neck region of the nucleus, the so-called Hapi region. This resulted in an oscillation of the compact particle abundance with respect to the spacecraft position and a global increase as the comet moved from 3.36 to 2.43 AU heliocentric distance. The speed of these particles, having masses from 10−10 to 10−7 kg, ranged from 0.3 to 12.2 m s−1 . The variation of particle mass and speed distribution with respect to the distance from the nucleus gave indications of the dust acceleration region. The influence of solar radiation pressure on micron and submicron particles was studied. The integrated dust mass flux collected from the Sun direction, that is, particles reflected by solar radiation pressure, was three times higher than the flux coming directly from the comet nucleus. The awakening 67P comet shows a strong dust flux anisotropy, confirming what was suggested by on-ground dust coma observations performed in 2008.


The Astrophysical Journal | 1996

Activation of an Ultraviolet Resonance in Hydrogenated Amorphous Carbon Grains by Exposure to Ultraviolet Radiation

V. Mennella; L. Colangeli; P. Palumbo; Alessandra Rotundi; W. A. Schutte; E. Bussoletti

The results of an experiment aimed at simulating the UV processing of hydrogenated amorphous carbon grains that occurs in the interstellar medium are presented. UV exposure of these grains induces significant changes in the UV-visible spectrum and, in particular, activates a resonance at 215 ± 2 nm, very close to the position of the interstellar extinction bump. This is the first reported laboratory observation of the activation of a UV resonance in hydrogenated carbon grains irradiated by UV photons. The spectral variations depend on the UV dose deposited in the samples; as the dose increases, the band becomes more intense while its peak position remains stable. We attribute the band to π-π* electronic transitions in sp2 ringed clusters that form the grains and interpret the spectral variations in terms of structural changes of the grains. This interpretation is confirmed by the behavior of the optical gap, which indicates an increase of the sp2 clustering degree as a function of the grain processing. The results of the present experiment suggest that it is unlikely that hydrogenated amorphous carbon grains can be transformed into pure graphite grains by UV processing in a typical diffuse-cloud timescale. The possibility that the interstellar bump is due to π-π* transitions in graphitic clusters that form small carbon grains is analyzed. This hypothesis requires a definite internal structure for the bump carrier. A process able to determine the grain structure is briefly discussed.

Collaboration


Dive into the Alessandra Rotundi's collaboration.

Top Co-Authors

Avatar

L. Colangeli

European Space Research and Technology Centre

View shared research outputs
Top Co-Authors

Avatar

V. Mennella

Polish Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

E. Bussoletti

Polish Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge