Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alessandra S. Souza is active.

Publication


Featured researches published by Alessandra S. Souza.


Cognitive Psychology | 2013

Analogous mechanisms of selection and updating in declarative and procedural working memory: experiments and a computational model.

Klaus Oberauer; Alessandra S. Souza; Michel D. Druey; Miriam Gade

The article investigates the mechanisms of selecting and updating representations in declarative and procedural working memory (WM). Declarative WM holds the objects of thought available, whereas procedural WM holds representations of what to do with these objects. Both systems consist of three embedded components: activated long-term memory, a central capacity-limited component for building structures through temporary bindings, and a single-element focus of attention. Five experiments test the hypothesis of analogous mechanisms in declarative and procedural WM, investigating repetition effects across trials for individual representations (objects and responses) and for sets (memory sets and task sets), as well as set-congruency effects. Evidence for analogous processes was obtained from three phenomena: (1) Costs of task switching and of list switching are reduced with longer preparation interval. (2) The effects of task congruency and of list congruency are undiminished with longer preparation interval. (3) Response repetition interacts with task repetition in procedural WM; here we show an analogous interaction of list repetition with item repetition in declarative WM. All three patterns were reproduced by a connectionist model implementing the assumed selection and updating mechanisms. The model consists of two modules, an item-selection module selecting individual items from a memory set, or responses from a task set, and a set-selection module for selecting memory sets or task sets. The model codes the matrix of binding weights in the item-selection module as a pattern of activation in the set-selection module, thereby providing a mechanism for building chunks in LTM, and for unpacking them as structures into working memory.


Attention Perception & Psychophysics | 2016

In search of the focus of attention in working memory: 13 years of the retro-cue effect

Alessandra S. Souza; Klaus Oberauer

The concept of attention has a prominent place in cognitive psychology. Attention can be directed not only to perceptual information, but also to information in working memory (WM). Evidence for an internal focus of attention has come from the retro-cue effect: Performance in tests of visual WM is improved when attention is guided to the test-relevant contents of WM ahead of testing them. The retro-cue paradigm has served as a test bed to empirically investigate the functions and limits of the focus of attention in WM. In this article, we review the growing body of (behavioral) studies on the retro-cue effect. We evaluate the degrees of experimental support for six hypotheses about what causes the retro-cue effect: (1) Attention protects representations from decay, (2) attention prioritizes the selected WM contents for comparison with a probe display, (3) attended representations are strengthened in WM, (4) not-attended representations are removed from WM, (5) a retro-cue to the retrieval target provides a head start for its retrieval before decision making, and (6) attention protects the selected representation from perceptual interference. The extant evidence provides support for the last four of these hypotheses.


Journal of Experimental Psychology: Human Perception and Performance | 2014

Unloading and Reloading Working Memory: Attending to One Item Frees Capacity

Alessandra S. Souza; Klaus Oberauer

During the retention interval of a working memory task, presenting a retro-cue directs attention to 1 of the items in working memory. Testing the cued item leads to faster and more accurate responses. We contrasted 5 explanations of this benefit: (a) removal of noncued items, (b) strengthening of the cued item, (c) protection from probe interference, (d) protection from degradation, and (e) prioritization during the decision process. Experiment 1 showed that retro-cues reduced the set size effect in a visual recognition task, and did so increasingly with more time available to use the retro-cue. This finding is predicted only by Hypotheses 1 and 2. Hypotheses 3 through 5 were ruled out as explanations of the retro-cue benefit in this experiment. In Experiments 2 and 3, participants encoded 2 sequentially presented memory sets. In half of the trials, 1 item from the first set was retro-cued during the interset interval. Retro-cues improved memory for the second set. This reloading benefit is predicted only by the removal hypothesis: Irrelevant contents are removed from working memory, freeing capacity to encode new contents. Experiment 3 also yielded evidence that strengthening of the cued item might contribute to the retro-cue effect.


Memory & Cognition | 2014

Retro-cue benefits in working memory without sustained focal attention

Alessandra S. Souza; Klaus Oberauer

In working memory (WM) tasks, performance can be boosted by directing attention to one memory object: When a retro-cue in the retention interval indicates which object will be tested, responding is faster and more accurate (the retro-cue benefit). We tested whether the retro-cue benefit in WM depends on sustained attention to the cued object by inserting an attention-demanding interruption task between the retro-cue and the memory test. In the first experiment, the interruption task required participants to shift their visual attention away from the cued representation and to a visual classification task on colors. In the second and third experiments, the interruption task required participants to shift their focal attention within WM: Attention was directed away from the cued representation by probing another representation from the memory array prior to probing the cued object. The retro-cue benefit was not attenuated by shifts of perceptual attention or by shifts of attention within WM. We concluded that sustained attention is not needed to maintain the cued representation in a state of heightened accessibility.


Attention Perception & Psychophysics | 2014

Focused attention improves working memory: implications for flexible-resource and discrete-capacity models

Alessandra S. Souza; Hsuan-Yu Lin; Klaus Oberauer

Performance in working memory (WM) tasks depends on the capacity for storing objects and on the allocation of attention to these objects. Here, we explored how capacity models need to be augmented to account for the benefit of focusing attention on the target of recall. Participants encoded six colored disks (Experiment 1) or a set of one to eight colored disks (Experiment 2) and were cued to recall the color of a target on a color wheel. In the no-delay condition, the recall-cue was presented after a 1,000-ms retention interval, and participants could report the retrieved color immediately. In the delay condition, the recall-cue was presented at the same time as in the no-delay condition, but the opportunity to report the color was delayed. During this delay, participants could focus attention exclusively on the target. Responses deviated less from the target’s color in the delay than in the no-delay condition. Mixture modeling assigned this benefit to a reduction in guessing (Experiments 1 and 2) and transposition errors (Experiment 2). We tested several computational models implementing flexible or discrete capacity allocation, aiming to explain both the effect of set size, reflecting the limited capacity of WM, and the effect of delay, reflecting the role of attention to WM representations. Both models fit the data better when a spatially graded source of transposition error is added to its assumptions. The benefits of focusing attention could be explained by allocating to this object a higher proportion of the capacity to represent color.


Annals of the New York Academy of Sciences | 2015

Refreshing memory traces: thinking of an item improves retrieval from visual working memory

Alessandra S. Souza; Klaus Oberauer

This article provides evidence that refreshing, a hypothetical attention‐based process operating in working memory (WM), improves the accessibility of visual representations for recall. “Thinking of”, one of several concurrently active representations, is assumed to refresh its trace in WM, protecting the representation from being forgotten. The link between refreshing and WM performance, however, has only been tenuously supported by empirical evidence. Here, we controlled which and how often individual items were refreshed in a color reconstruction task by presenting cues prompting participants to think of specific WM items during the retention interval. We show that the frequency with which an item is refreshed improves recall of this item from visual WM. Our study establishes a role of refreshing in recall from visual WM and provides a new method for studying the impact of refreshing on the amount of information we can keep accessible for ongoing cognition.


Journal of Experimental Psychology: Human Perception and Performance | 2016

Getting more from visual working memory: Retro-cues enhance retrieval and protect from visual interference.

Alessandra S. Souza; Klaus Oberauer

Visual working memory (VWM) has a limited capacity. This limitation can be mitigated by the use of focused attention: if attention is drawn to the relevant working memory content before test, performance improves (the so-called retro-cue benefit). This study tests 2 explanations of the retro-cue benefit: (a) Focused attention protects memory representations from interference by visual input at test, and (b) focusing attention enhances retrieval. Across 6 experiments using color recognition and color reproduction tasks, we varied the amount of color interference at test, and the delay between a retrieval cue (i.e., the retro-cue) and the memory test. Retro-cue benefits were larger when the memory test introduced interfering visual stimuli, showing that the retro-cue effect is in part because of protection from visual interference. However, when visual interference was held constant, retro-cue benefits were still obtained whenever the retro-cue enabled retrieval of an object from VWM but delayed response selection. Our results show that accessible information in VWM might be lost in the processes of testing memory because of visual interference and incomplete retrieval. This is not an inevitable state of affairs, though: Focused attention can be used to get the most out of VWM. (PsycINFO Database Record


Psychonomic Bulletin & Review | 2015

Time-based forgetting in visual working memory reflects temporal distinctiveness, not decay.

Alessandra S. Souza; Klaus Oberauer

Is forgetting from working memory (WM) better explained by decay or interference? The answer to this question is the topic of an ongoing debate. Recently, a number of studies showed that performance in tests of visual WM declines with an increasing unfilled retention interval. This finding was interpreted as revealing decay. Alternatively, it can be explained by interference theories as an effect of temporal distinctiveness. According to decay theories, forgetting depends on the absolute time elapsed since the event to be retrieved. In contrast, temporal distinctiveness theories predict that memory depends on relative time, that is, the time since the to-be-retrieved event relative to the time since other, potentially interfering events. In the present study, we contrasted the effects of absolute time and relative time on forgetting from visual WM, using a continuous color recall task. To this end, we varied the retention interval and the inter-trial interval. The error in reporting the target color was a function of the ratio of the retention interval to the inter-trial interval, as predicted by temporal distinctiveness theories. Mixture modeling revealed that lower temporal distinctiveness produced a lower probability of reporting the target, but no changes in its precision in memory. These data challenge the role of decay in accounting for performance in tests of visual WM, and show that the relative spacing of events in time determines the degree of interference.


Quarterly Journal of Experimental Psychology | 2012

Processing of representations in declarative and procedural working memory

Alessandra S. Souza; Klaus Oberauer; Miriam Gade; Michel D. Druey

The article investigates the relation between declarative and procedural working memory (WM; Oberauer, 2009). Two experiments test the assumption that representations in the two subsystems are selected for processing in analogous ways. Participants carried out a series of decisions on memorized lists of digits. For each decision, they had to select declarative and procedural representations. Regarding declarative representations, participants selected a memory set and a digit within this set as the input to each decision. With respect to the procedural representations, they selected a task set to be applied to the selected digit and a response within that task set. We independently manipulated the number of lists and the number of tasks to be switched among (one, two, or three; Experiment 1) and preparation time for a list switch (Experiment 2). For three effects commonly observed in task-switch studies, analogues in declarative WM were found: list-switch costs, mixing costs, and residual switch costs. List- and task-switch costs were underadditive, suggesting that declarative and procedural representations are selected separately and in parallel. The findings support the hypothesis of two analogous WM subsystems.


Learning & Behavior | 2010

History effects on induced and operant variability.

Alessandra S. Souza; Josele Abreu-Rodrigues; Ana A. Baumann

Two experiments evaluated history effects on induced and operant variability. College students typed three-digit sequences on a computer keyboard. Sequence variability was induced (by no reinforcement or variation- independent reinforcement) or reinforced (by variation- or repetition-dependent reinforcement). Conditions with induced and operant variability were presented according to a reverse between-groups design. In Experiment 1, we examined transitions from the variation or repetition contingencies to no reinforcement, and vice versa. In Experiment 2, the variation or repetition contingencies were followed or preceded by variation-independent reinforcement. The results showed that (1) a history of no reinforcement impaired operant variability learning; (2) induced variability levels were higher and lower after a history of reinforcement for variation and repetition, respectively; (3) repetition was more easily disrupted by no reinforcement and independent reinforcement than was variation; and (4) response variability and stability were a function of past and current reinforcement conditions. These results indicate that reinforcement history influences both induced and operant variability levels.

Collaboration


Dive into the Alessandra S. Souza's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge