Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alessandra Salvioli is active.

Publication


Featured researches published by Alessandra Salvioli.


Cellular Microbiology | 2007

Presymbiotic growth and sporal morphology are affected in the arbuscular mycorrhizal fungus Gigaspora margarita cured of its endobacteria

Erica Lumini; Valeria Bianciotto; Patricia Jargeat; Mara Novero; Alessandra Salvioli; Antonella Faccio; Guillaume Bécard; Paola Bonfante

Some arbuscular mycorrhizal fungi contain endocellular bacteria. In Gigaspora margarita BEG 34, a homogenous population of β‐Proteobacteria is hosted inside the fungal spore. The bacteria, named Candidatus Glomeribacter gigasporarum, are vertically transmitted through fungal spore generations. Here we report how a protocol based on repeated passages through single‐spore inocula caused dilution of the initial bacterial population eventually leading to cured spores. Spores of this line had a distinct phenotype regarding cytoplasm organization, vacuole morphology, cell wall organization, lipid bodies and pigment granules. The absence of bacteria severely affected presymbiotic fungal growth such as hyphal elongation and branching after root exudate treatment, suggesting that Ca. Glomeribacter gigasporarum is important for optimal development of its fungal host. Under laboratory conditions, the cured fungus could be propagated, i.e. could form mycorrhizae and sporulate, and can therefore be considered as a stable variant of the wild type. The results demonstrated that – at least for the G. margarita BEG 34 isolate – the absence of endobacteria affects the spore phenotype of the fungal host, and causes delays in the growth of germinating mycelium, possibly affecting its ecological fitness. This cured line is the first manipulated and stable isolate of an arbuscular mycorrhizal fungus.


The ISME Journal | 2012

The genome of the obligate endobacterium of an AM fungus reveals an interphylum network of nutritional interactions

Stefano Ghignone; Alessandra Salvioli; Iulia Anca; Erica Lumini; G. Ortu; Luca Petiti; Stéphane Cruveiller; Valeria Bianciotto; Pietro Piffanelli; Luisa Lanfranco; Paola Bonfante

As obligate symbionts of most land plants, arbuscular mycorrhizal fungi (AMF) have a crucial role in ecosystems, but to date, in the absence of genomic data, their adaptive biology remains elusive. In addition, endobacteria are found in their cytoplasm, the role of which is unknown. In order to investigate the function of the Gram-negative Candidatus Glomeribacter gigasporarum, an endobacterium of the AMF Gigaspora margarita, we sequenced its genome, leading to an ∼1.72-Mb assembly. Phylogenetic analyses placed Ca. G. gigasporarum in the Burkholderiaceae whereas metabolic network analyses clustered it with insect endobacteria. This positioning of Ca. G. gigasporarum among different bacterial classes reveals that it has undergone convergent evolution to adapt itself to intracellular lifestyle. The genome annotation of this mycorrhizal-fungal endobacterium has revealed an unexpected genetic mosaic where typical determinants of symbiotic, pathogenic and free-living bacteria are integrated in a reduced genome. Ca. G. gigasporarum is an aerobic microbe that depends on its host for carbon, phosphorus and nitrogen supply; it also expresses type II and type III secretion systems and synthesizes vitamin B12, antibiotics- and toxin-resistance molecules, which may contribute to the fungal hosts ecological fitness. Ca. G. gigasporarum has an extreme dependence on its host for nutrients and energy, whereas the fungal host is itself an obligate biotroph that relies on a photosynthetic plant. Our work represents the first step towards unraveling a complex network of interphylum interactions, which is expected to have a previously unrecognized ecological impact.


The ISME Journal | 2016

Symbiosis with an endobacterium increases the fitness of a mycorrhizal fungus, raising its bioenergetic potential

Alessandra Salvioli; Stefano Ghignone; Mara Novero; Lorella Navazio; Francesco Venice; Paolo Bagnaresi; Paola Bonfante

Arbuscular mycorrhizal fungi (AMF) occur in the rhizosphere and in plant tissues as obligate symbionts, having key roles in plant evolution and nutrition. AMF possess endobacteria, and genome sequencing of the endobacterium Candidatus Glomeribacter gigasporarum revealed a reduced genome and a dependence on the fungal host. To understand the effect of bacteria on fungal fitness, we used next-generation sequencing to analyse the transcriptional profile of Gigaspora margarita in the presence and in the absence of its endobacterium. Genomic data on AMF are limited; therefore, we first generated a gene catalogue for G. margarita. Transcriptome analysis revealed that the endobacterium has a stronger effect on the pre-symbiotic phase of the fungus. Coupling transcriptomics with cell biology and physiological approaches, we demonstrate that the bacterium increases the fungal sporulation success, raises the fungal bioenergetic capacity, increasing ATP production, and eliciting mechanisms to detoxify reactive oxygen species. By using TAT peptide to translocate the bioluminescent calcium reporter aequorin, we demonstrated that the line with endobacteria had a lower basal intracellular calcium concentration than the cured line. Lastly, the bacteria seem to enhance the fungal responsiveness to strigolactones, the plant molecules that AMF perceive as branching factors. Although the endobacterium exacts a nutritional cost on the AMF, endobacterial symbiosis improves the fungal ecological fitness by priming mitochondrial metabolic pathways and giving the AMF more tools to face environmental stresses. Thus, we hypothesise that, as described for the human microbiota, endobacteria may increase AMF innate immunity.


The ISME Journal | 2014

Detection of a novel intracellular microbiome hosted in arbuscular mycorrhizal fungi

Alessandro Desirò; Alessandra Salvioli; Eddy L Ngonkeu; Stephen J. Mondo; Sara Epis; Antonella Faccio; Andres Kaech; Teresa E. Pawlowska; Paola Bonfante

Arbuscular mycorrhizal fungi (AMF) are important members of the plant microbiome. They are obligate biotrophs that colonize the roots of most land plants and enhance host nutrient acquisition. Many AMF themselves harbor endobacteria in their hyphae and spores. Two types of endobacteria are known in Glomeromycota: rod-shaped Gram-negative Candidatus Glomeribacter gigasporarum, CaGg, limited in distribution to members of the Gigasporaceae family, and coccoid Mollicutes-related endobacteria, Mre, widely distributed across different lineages of AMF. The goal of the present study is to investigate the patterns of distribution and coexistence of the two endosymbionts, CaGg and Mre, in spore samples of several strains of Gigaspora margarita. Based on previous observations, we hypothesized that some AMF could host populations of both endobacteria. To test this hypothesis, we performed an extensive investigation of both endosymbionts in G. margarita spores sampled from Cameroonian soils as well as in the Japanese G. margarita MAFF520054 isolate using different approaches (molecular phylotyping, electron microscopy, fluorescence in situ hybridization and quantitative real-time PCR). We found that a single AMF host can harbour both types of endobacteria, with Mre population being more abundant, variable and prone to recombination than the CaGg one. Both endosymbionts seem to retain their genetic and lifestyle peculiarities regardless of whether they colonize the host alone or together. These findings show for the first time that fungi support an intracellular bacterial microbiome, in which distinct types of endobacteria coexist in a single cell.


BMC Plant Biology | 2012

The arbuscular mycorrhizal status has an impact on the transcriptome profile and amino acid composition of tomato fruit.

Alessandra Salvioli; Inès Zouari; Michel Chalot; Paola Bonfante

BackgroundArbuscular mycorrhizal (AM) symbiosis is the most widespread association between plant roots and fungi in natural and agricultural ecosystems. This work investigated the influence of mycorrhization on the economically relevant part of the tomato plant, by analyzing its impact on the physiology of the fruit. To this aim, a combination of phenological observations, transcriptomics (Microarrays and qRT-PCR) and biochemical analyses was used to unravel the changes that occur on fruits from Micro-Tom tomato plants colonized by the AM fungus Glomus mosseae.ResultsMycorrhization accelerated the flowering and fruit development and increased the fruit yield. Eleven transcripts were differentially regulated in the fruit upon mycorrhization, and the mycorrhiza-responsive genes resulted to be involved in nitrogen and carbohydrate metabolism as well as in regulation and signal transduction. Mycorrhization has increased the amino acid abundance in the fruit from mycorrhizal plants, with glutamine and asparagine being the most responsive amino acids.ConclusionsThe obtained results offer novel data on the systemic changes that are induced by the establishment of AM symbiosis in the plant, and confirm the work hypothesis that AM fungi may extend their influence from the root to the fruit.


New Phytologist | 2012

The mitochondrial genome of the arbuscular mycorrhizal fungus Gigaspora margarita reveals two unsuspected trans-splicing events of group I introns.

Adrian Pelin; Jean-François Pombert; Alessandra Salvioli; Linda Bonen; Paola Bonfante; Nicolas Corradi

• Arbuscular mycorrhizal fungi (AMF) are ubiquitous organisms that benefit ecosystems through the establishment of an association with the roots of most plants: the mycorrhizal symbiosis. Despite their ecological importance, however, these fungi have been poorly studied at the genome level. • In this study, total DNA from the AMF Gigaspora margarita was subjected to a combination of 454 and Illumina sequencing, and the resulting reads were used to assemble its mitochondrial genome de novo. This genome was annotated and compared with those of other relatives to better comprehend the evolution of the AMF lineage. • The mitochondrial genome of G. margarita is unique in many ways, exhibiting a large size (97 kbp) and elevated GC content (45%). This genome also harbors molecular events that were previously unknown to occur in fungal mitochondrial genomes, including trans-splicing of group I introns from two different genes coding for the first subunit of the cytochrome oxidase and for the small subunit of the rRNA. • This study reports the second published genome from an AMF organelle, resulting in relevant DNA sequence information from this poorly studied fungal group, and providing new insights into the frequency, origin and evolution of trans-spliced group I introns found across the mitochondrial genomes of distantly related organisms.


Plant Science | 2013

Systems biology and “omics” tools: A cooperation for next-generation mycorrhizal studies

Alessandra Salvioli; Paola Bonfante

Omics tools constitute a powerful means of describing the complexity of plants and soil-borne microorganisms. Next generation sequencing technologies, coupled with emerging systems biology approaches, seem promising to represent a new strategy in the study of plant-microbe interactions. Arbuscular mycorrhizal fungi (AMF) are ubiquitous symbionts of plant roots, that provide their host with many benefits. However, as obligate biotrophs, AMF show a genetic, cellular and physiological complexity that makes the study of their biology as well as their effective agronomical exploitation rather difficult. Here, we speculate that the increasing availability of omics data on mycorrhiza and of computational tools that allow systems biology approaches represents a step forward in the understanding of arbuscular mycorrhizal symbiosis. Furthermore, the application of this study-perspective to agriculturally relevant model plants, such as tomato and rice, will lead to a better in-field exploitation of this beneficial symbiosis in the frame of low-input agriculture.


Environmental Microbiology | 2010

Endobacteria affect the metabolic profile of their host Gigaspora margarita, an arbuscular mycorrhizal fungus

Alessandra Salvioli; Marco Chiapello; Joël Fontaine; Anissa Lounes Hadj-Sahraoui; Anne Grandmougin-Ferjani; Luisa Lanfranco; Paola Bonfante

The aim of this paper was to understand whether the endobacterium identified as Candidatus Glomeribacter gigasporarum has an effect on the biology of its host, the arbuscular mycorrhizal fungus Gigaspora margarita, through the study of the modifications induced on the fungal proteome and lipid profile. The availability of G. margarita cured spores (i.e. spores that do not contain bacteria), represented a crucial tool to enable the comparison between two fungal homogeneous populations in the presence and the absence of the bacterial components. Our results demonstrate that the endobacterial presence leads to a modulation of fungal protein expression in all the different conditions we tested (quiescent, germinating and strigolactone-elicited germinating spores), and in particular after treatment with a strigolactone analogue. The fungal fatty acid profile resulted to be modified both quantitatively and qualitatively in the absence of endobacteria, being fatty acids less abundant in the cured spores. The results offer one of the first comparative metabolic studies of an AM fungus investigated under different physiological conditions, reveal that endobacteria have an important impact on the host fungal activity, influencing both protein expression and lipid profile, and suggest that the bacterial absence is perceived by G. margarita as a stimulus which activates stress-responsive proteins.


New Phytologist | 2008

Simultaneous detection and quantification of the unculturable microbe Candidatus Glomeribacter gigasporarum inside its fungal host Gigaspora margarita

Alessandra Salvioli; Erica Lumini; Iulia Anca; Valeria Bianciotto; Paola Bonfante

A combined approach based on quantitative and nested polymerase chain reaction (qPCR and nPCR, respectively) has been set up to detect and quantify the unculturable endobacterium Candidatus Glomeribacter gigasporarum inside the spores of its fungal host Gigaspora margarita. Four genes were targeted, two of bacterial origin (23S rRNA gene and rpoB) and two from the fungus (18S rRNA gene and EF1-alpha). The sensitivity of the qPCR protocol has proved to be comparable to that of nPCR, both for the fungal and the bacterial detection. It has been demonstrated that the last detected dilution in qPCR corresponded, in each case, to 10 copies of the target sequences, suggesting that the method is equally sensitive for the detection of both fungal and bacterial targets. As the two targeted bacterial genes are predicted to be in single copy, it can be concluded that the detection limit is of 10 bacterial genomes for each mixture. The protocol was then successfully applied to amplify fungal and bacterial DNA from auxiliary cells and extraradical and intraradical mycelium. For the first time qPCR has been applied to a complex biological system to detect and quantify fungal and bacterial components using single-copy genes, and to monitor the bacterial presence throughout the fungal life cycle.


Planta | 2016

Gr and hp-1 tomato mutants unveil unprecedented interactions between arbuscular mycorrhizal symbiosis and fruit ripening

Matteo Chialva; Inès Zouari; Alessandra Salvioli; Mara Novero; Julia Vrebalov; James J. Giovannoni; Paola Bonfante

AbstractMain conclusionSystemic responses to an arbuscular mycorrhizal fungus reveal opposite phenological patterns in two tomato ripening mutants depending whether ethylene or light reception is involved. The availability of tomato ripening mutants has revealed many aspects of the genetics behind fleshy fruit ripening, plant hormones and light signal reception. Since previous analyses revealed that arbuscular mycorrhizal symbiosis influences tomato berry ripening, we wanted to test the hypothesis that an interplay might occur between root symbiosis and fruit ripening. With this aim, we screened seven tomato mutants affected in the ripening process for their responsiveness to the arbuscular mycorrhizal fungus Funneliformis mosseae. Following their phenological responses we selected two mutants for a deeper analysis: Green ripe (Gr), deficient in fruit ethylene perception and high-pigment-1 (hp-1), displaying enhanced light signal perception throughout the plant. We investigated the putative interactions between ripening processes, mycorrhizal establishment and systemic effects using biochemical and gene expression tools. Our experiments showed that both mutants, notwithstanding a normal mycorrhizal phenotype at root level, exhibit altered arbuscule functionality. Furthermore, in contrast to wild type, mycorrhization did not lead to a higher phosphate concentration in berries of both mutants. These results suggest that the mutations considered interfere with arbuscular mycorrhiza inducing systemic changes in plant phenology and fruits metabolism. We hypothesize a cross talk mechanism between AM and ripening processes that involves genes related to ethylene and light signaling.

Collaboration


Dive into the Alessandra Salvioli's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Erica Lumini

National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge