Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alessandra Soriani is active.

Publication


Featured researches published by Alessandra Soriani.


Blood | 2009

ATM-ATR-dependent up-regulation of DNAM-1 and NKG2D ligands on multiple myeloma cells by therapeutic agents results in enhanced NK-cell susceptibility and is associated with a senescent phenotype.

Alessandra Soriani; Alessandra Zingoni; Cristina Cerboni; Maria Luisa Iannitto; Maria Rosaria Ricciardi; Valentina Di Gialleonardo; Marco Cippitelli; Cinzia Fionda; Maria Teresa Petrucci; Anna Guarini; Robin Foà; Angela Santoni

There is much evidence to support a role for natural killer (NK) cells in controlling the progression of multiple myeloma (MM), a malignancy characterized by an abnormal plasma cell proliferation in the bone marrow (BM). Induction of DNA damage response has been recently shown capable of enhancing NKG2D ligand (NKG2DL) expression, but nothing is known about DNAM-1 ligand (DNAM-1L) regulation. In this study, we show that myeloma cells treated with low doses of therapeutic agents commonly used in the management of patients with MM, such as doxorubicin, melphalan, and bortezomib, up-regulate DNAM-1 and NKG2D ligands. Accordingly, therapeutic drug treatment of MM cells increases NK-cell degranulation, the NKG2D and DNAM-1 receptors being the major triggering molecules. Similar data were also obtained using ex vivo primary plasma cells derived from MM patients. Drug-induced DNAM-1 and NKG2D ligand expression was abolished after treatment with the ATM (ataxia telangiectasia mutated) and ATR (ATM- and RAD3-related) pharmacologic inhibitors caffeine and KU-55933, and was preferentially associated with senescent cells arrested in the G2 phase of the cell cycle. Altogether, our findings have identified a common pathway that can trigger the up-regulation of different NK cell-activating ligands and suggest that NK cells represent an immunosurveillance mechanism toward cells undergoing stress-induced senescent programs.


Immunity | 2000

RAC1/P38 MAPK Signaling Pathway Controls β1 Integrin–Induced Interleukin-8 Production in Human Natural Killer Cells

Fabrizio Mainiero; Alessandra Soriani; Raffaele Strippoli; Jordan Jacobelli; Angela Gismondi; Mario Piccoli; Luigi Frati; Angela Santoni

The MAP kinase (MAPK) p38 plays a key role in regulating inflammatory responses. Here, we demonstrate that beta1 integrin ligation on human NK cells results in the activation of the p38 MAPK signaling pathway, which is required for integrin-triggered IL-8 production. In addition, we identified some of the upstream events accompanying the beta1 integrin-mediated p38 MAPK activation, namely, the activation of the Rac guanine nucleotide exchange factor (GEF) p95 Vav, the small G protein Rac1, and the cytoplasmic kinases Pak1 and MKK3. Finally, we provide direct evidence that p95 Vav and Rac control the activation of p38 MAPK triggered by beta1 integrins.


Blood | 2011

DNAM-1 ligand expression on Ag-stimulated T lymphocytes is mediated by ROS-dependent activation of DNA-damage response: relevance for NK–T cell interaction

Michele Ardolino; Alessandra Zingoni; Cristina Cerboni; Francesca Cecere; Alessandra Soriani; Maria Luisa Iannitto; Angela Santoni

An important role for natural killer (NK) cells in the regulation of T-cell responses is emerging, although the receptor pairs regulating the NK-T-cell interaction have still not been identified. We found that superantigen-stimulated T cells express Nectin-2 (CD112) and poliovirus receptor (PVR; CD155), the ligands of the activating NK receptor DNAX accessory molecule-1 (DNAM-1; CD226). Interestingly, only PVR was present at the T cell surface, particularly on cells in the S and G(2)/M phases of the cell cycle. The up-regulation of PVR expression involves DNA-damage response (DDR)-dependent pathways, because we found that pharmacologic inhibition of ATM and ATR kinases reduced PVR expression and that PVR was almost exclusively induced on cells expressing the DDR marker γH2AX. Oxidative stress contributed to DDR activation, and our results showed impaired PVR levels in the presence of the reactive oxygen species (ROS) scavenger N-acetyl-cysteine (NAC), being monocytes the main ROS source needed for optimal PVR expression on activated T cells. Interestingly, in accordance with ligand expression, NK cells lysed allogeneic proliferating more efficiently than nonproliferating T lymphocytes, with a mechanism requiring the cooperation between DNAM-1 and NKG2D. These results could contribute to unraveling the role of NK cells in the down-regulation of T-cell responses in physiologic and pathologic processes such as autoimmunity or GVHD.


Journal of Immunology | 2003

Proline-rich tyrosine kinase 2 and Rac activation by chemokine and integrin receptors controls NK cell transendothelial migration

Angela Gismondi; Jordan Jacobelli; Raffaele Strippoli; Fabrizio Mainiero; Alessandra Soriani; Loredana Cifaldi; Mario Piccoli; Luigi Frati; Angela Santoni

Protein tyrosine kinase activation is an important requisite for leukocyte migration. Herein we demonstrate that NK cell binding to endothelium activates proline-rich tyrosine kinase 2 (Pyk-2) and the small GTP binding protein Rac that are coupled to integrin and chemokine receptors. Chemokine-mediated, but not integrin-mediated, Pyk-2 and Rac activation was sensitive to pretreatment of NK cells with pertussis toxin, a pharmacological inhibitor of Gi protein-coupled receptors. Both Pyk-2 and Rac are functionally involved in chemokine-induced NK cell migration through endothelium or ICAM-1 or VCAM-1 adhesive proteins, as shown by the use of recombinant vaccinia viruses encoding dominant negative mutants of Pyk-2 and Rac. Moreover, we found that Pyk-2 is associated with the Rac guanine nucleotide exchange factor Vav, which undergoes tyrosine phosphorylation upon integrin triggering. Finally, we provide direct evidence for the involvement of Pyk-2 in the control of both chemokine- and integrin-mediated Rac activation. Collectively, our results indicate that Pyk-2 acts as a receptor-proximal link between integrin and chemokine receptor signaling, and the Pyk-2/Rac pathway plays a pivotal role in the control of NK cell transendothelial migration.


Frontiers in Immunology | 2014

The DNA damage response: a common pathway in the regulation of NKG2D and DNAM-1 ligand expression in normal, infected, and cancer cells

Cristina Cerboni; Cinzia Fionda; Alessandra Soriani; Alessandra Zingoni; Margherita Doria; Marco Cippitelli; Angela Santoni

NKG2D and DNAM-1 are two activating receptors, present on the surface of NK cells and other cells of the immune system. Their ligands – MICA, MICB, ULBP1-6 for NKG2D, PVR/CD155 and Nectin-2/CD112 for DNAM-1 – can be constitutively expressed at low levels in some normal cells, but they are more often defined as “stress-induced,” since different stimuli can positively regulate their expression. In this review, we describe the molecular mechanisms involved in the up-regulation of NKG2D and DNAM-1 ligands under different physiological and pathological “stress” conditions, including mitosis, viral infections, and cancer. We will focus on the DNA damage response, as recent advances in the field have uncovered its important role as a common signaling pathway in the regulation of both NKG2D and DNAM-1 ligand expression in response to very diverse conditions and stimuli.


Journal of Immunology | 2009

Heat Shock Protein-90 Inhibitors Increase MHC Class I-Related Chain A and B Ligand Expression on Multiple Myeloma Cells and Their Ability to Trigger NK Cell Degranulation

Cinzia Fionda; Alessandra Soriani; Giulia Malgarini; Maria Luisa Iannitto; Angela Santoni; Marco Cippitelli

Modulation of the host immune system represents a promising therapeutic approach against cancer, including multiple myeloma. Recent findings indicate that the NK group 2D (NKG2D)- and DNAX accessory molecule-1 (DNAM-1)-activating receptors play a prominent role in tumor recognition and elimination by cytotoxic lymphocytes, suggesting that the levels of NKG2D and DNAM-1 ligand expression on tumor cells may be a critical factor to improve the immune response against cancer. In this study, we tested the effect of 17-allylaminogeldanamycin and radicicol, drugs targeting the heat shock protein-90 (HSP-90) chaperone protein and displaying antimyeloma activity, on the expression of NKG2D and DNAM-1 ligands in human myeloma cell lines. We demonstrate that HSP-90 inhibitors are able to up-regulate both MHC class I chain-related (MIC) A and MICB protein surface and mRNA expression in human myeloma cell lines, without any significant effect on the basal expression of the DNAM-1 ligand poliovirus receptor CD155, or induction of nectin-2 and UL16-binding proteins. Activation of the transcription factor heat shock factor-1 by HSP-90 inhibitors is essential for the up-regulation of MICA/MICB expression and knockdown of heat shock factor-1 using small hairpin RNA interference blocks this effect. Moreover, in vitro and in vivo binding of heat shock factor-1 to MICA and MICB promoters indicates that it may enhance NKG2D ligand expression at the transcriptional level. Finally, exposure to HSP-90 inhibitors renders myeloma cells more efficient to activate NK cell degranulation and a blocking Ab specific for NKG2D significantly reduces this effect. Thus, these results provide evidence that targeting NKG2D ligands expression may be an additional mechanism supporting the antimyeloma activity of HSP-90 inhibitors and suggest their possible immunotherapeutic value.


Journal of Medicinal Chemistry | 2013

Toward highly potent cancer agents by modulating the C-2 group of the arylthioindole class of tubulin polymerization inhibitors

Giuseppe La Regina; Ruoli Bai; Whilelmina Maria Rensen; Erica Di Cesare; Antonio Coluccia; Francesco Piscitelli; Valeria Famiglini; Alessia Reggio; Marianna Nalli; Sveva Pelliccia; Eleonora Da Pozzo; Barbara Costa; Ilaria Granata; Amalia Porta; Bruno Maresca; Alessandra Soriani; Maria Luisa Iannitto; Angela Santoni; Junjie Li; Marlein Miranda Cona; Feng Chen; Yicheng Ni; Andrea Brancale; Giulio Dondio; Stefania Vultaggio; Mario Varasi; Ciro Mercurio; Claudia Martini; Ernest Hamel; Patrizia Lavia

New arylthioindole derivatives having different cyclic substituents at position 2 of the indole were synthesized as anticancer agents. Several compounds inhibited tubulin polymerization at submicromolar concentration and inhibited cell growth at low nanomolar concentrations. Compounds 18 and 57 were superior to the previously synthesized 5. Compound 18 was exceptionally potent as an inhibitor of cell growth: it showed IC₅₀ = 1.0 nM in MCF-7 cells, and it was uniformly active in the whole panel of cancer cells and superior to colchicine and combretastatin A-4. Compounds 18, 20, 55, and 57 were notably more potent than vinorelbine, vinblastine, and paclitaxel in the NCI/ADR-RES and Messa/Dx5 cell lines, which overexpress P-glycoprotein. Compounds 18 and 57 showed initial vascular disrupting effects in a tumor model of liver rhabdomyosarcomas at 15 mg/kg intravenous dosage. Derivative 18 showed water solubility and higher metabolic stability than 5 in human liver microsomes.


Journal of Immunology | 2014

Reactive Oxygen Species– and DNA Damage Response–Dependent NK Cell Activating Ligand Upregulation Occurs at Transcriptional Levels and Requires the Transcriptional Factor E2F1

Alessandra Soriani; Maria Luisa Iannitto; Biancamaria Ricci; Cinzia Fionda; Giulia Malgarini; Stefania Morrone; Giovanna Peruzzi; Maria Rosaria Ricciardi; Maria Teresa Petrucci; Marco Cippitelli; Angela Santoni

Increasing evidence indicates that cancer cell stress induced by chemotherapeutic agents promote antitumor immune responses and contribute to their full clinical efficacy. In this article, we identify the signaling events underlying chemotherapy-induced NKG2D and DNAM-1 ligand expression on multiple myeloma (MM) cells. Our findings indicate that sublethal doses of doxorubicin and melphalan initiate a DNA damage response (DDR) controlling ligand upregulation on MM cell lines and patient-derived malignant plasma cells in Chk1/2-dependent and p53-independent manner. Drug-induced MICA and PVR gene expression are transcriptionally regulated and involve DDR-dependent E2F1 transcription factor activity. We also describe the involvement of changes in the redox state in the control of DDR-dependent upregulation of ligand surface expression and gene transcriptional activity by using the antioxidant agent N-acetyl-l-cysteine. Finally, in accordance with much evidence indicating that DDR and oxidative stress are major determinants of cellular senescence, we found that redox-dependent DDR activation upon chemotherapeutic treatment is critical for MM cell entry in premature senescence and is required for the preferential ligand upregulation on senescent cells, which are preferentially killed by NK cells and trigger potent IFN-γ production. We propose immunogenic senescence as a mechanism that promotes the clearance of drug-treated tumor cells by innate effector lymphocytes, including NK cells.


Journal of Medicinal Chemistry | 2011

Design and Synthesis of 2-Heterocyclyl-3-arylthio-1H-indoles as Potent Tubulin Polymerization and Cell Growth Inhibitors with Improved Metabolic Stability

Giuseppe La Regina; Ruoli Bai; Willeke Rensen; Antonio Coluccia; Francesco Piscitelli; Valerio Gatti; Alessio Bolognesi; Antonio Lavecchia; Ilaria Granata; Amalia Porta; Bruno Maresca; Alessandra Soriani; Maria Luisa Iannitto; Marisa Mariani; Angela Santoni; Andrea Brancale; Cristiano Ferlini; Giulio Dondio; Mario Varasi; Ciro Mercurio; Ernest Hamel; Patrizia Lavia; Ettore Novellino; Romano Silvestri

New arylthioindoles (ATIs) were obtained by replacing the 2-alkoxycarbonyl group with a bioisosteric 5-membered heterocycle nucleus. The new ATIs 5, 8, and 10 inhibited tubulin polymerization, reduced cell growth of a panel of human transformed cell lines, and showed higher metabolic stability than the reference ester 3. These compounds induced mitotic arrest and apoptosis at a similar level as combretastatin A-4 and vinblastine and triggered caspase-3 expression in a significant fraction of cells in both p53-proficient and p53-defective cell lines. Importantly, ATIs 5, 8, and 10 were more effective than vinorelbine, vinblastine, and paclitaxel as growth inhibitors of the P-glycoprotein-overexpressing cell line NCI/ADR-RES. Compound 5 was shown to have medium metabolic stability in both human and mouse liver microsomes, in contrast to the rapidly degraded reference ester 3, and a pharmacokinetic profile in the mouse characterized by a low systemic clearance and excellent oral bioavailability.


Journal of Immunology | 2013

Inhibition of Glycogen Synthase Kinase-3 Increases NKG2D Ligand MICA Expression and Sensitivity to NK Cell–Mediated Cytotoxicity in Multiple Myeloma Cells: Role of STAT3

Cinzia Fionda; Giulia Malgarini; Alessandra Soriani; Alessandra Zingoni; Francesca Cecere; Maria Luisa Iannitto; Maria Rosaria Ricciardi; Vincenzo Federico; Maria Teresa Petrucci; Angela Santoni; Marco Cippitelli

Engagement of NKG2D and DNAX accessory molecule-1 (DNAM-1) receptors on lymphocytes plays an important role for anticancer response and represents an interesting therapeutic target for pharmacological modulation. In this study, we investigated the effect of inhibitors targeting the glycogen synthase kinase-3 (GSK3) on the expression of NKG2D and DNAM-1 ligands in multiple myeloma (MM) cells. GSK3 is a pleiotropic serine–threonine kinase point of convergence of numerous cell-signaling pathways, able to regulate the proliferation and survival of cancer cells, including MM. We found that inhibition of GSK3 upregulates both MICA protein surface and mRNA expression in MM cells, with little or no effects on the basal expression of the MICB and DNAM-1 ligand poliovirus receptor/CD155. Moreover, exposure to GSK3 inhibitors renders myeloma cells more efficient to activate NK cell degranulation and to enhance the ability of myeloma cells to trigger NK cell–mediated cytotoxicity. We could exclude that increased expression of β-catenin or activation of the heat shock factor-1 (transcription factors inhibited by active GSK3) is involved in the upregulation of MICA expression, by using RNA interference or viral transduction of constitutive active forms. On the contrary, inhibition of GSK3 correlated with a downregulation of STAT3 activation, a negative regulator of MICA transcription. Both Tyr705 phosphorylation and binding of STAT3 on MICA promoter are reduced by GSK3 inhibitors; in addition, overexpression of a constitutively active form of STAT3 significantly inhibits MICA upregulation. Thus, we provide evidence that regulation of the NKG2D-ligand MICA expression may represent an additional immune-mediated mechanism supporting the antimyeloma activity of GSK3 inhibitors.

Collaboration


Dive into the Alessandra Soriani's collaboration.

Top Co-Authors

Avatar

Angela Santoni

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar

Marco Cippitelli

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar

Cinzia Fionda

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar

Alessandra Zingoni

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Biancamaria Ricci

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar

Cristina Cerboni

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar

Rossella Paolini

Sapienza University of Rome

View shared research outputs
Researchain Logo
Decentralizing Knowledge