Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alessandra Stella is active.

Publication


Featured researches published by Alessandra Stella.


Science | 2009

Genome-Wide Survey of SNP Variation Uncovers the Genetic Structure of Cattle Breeds

Ra Gibbs; Jf Taylor; Cp Van Tassel; W. Barendse; Ka Eversole; Ca Gill; Rd Green; Dl Hamernik; Sm Kappes; Sigbjørn Lien; Lk Matukumalli; Jc Mcevan; Lv Mazareth; Rd Schnabel; Gm Weinstock; Da Wheeler; Paolo Ajmone Marsan; Pj Boettcher; Ar Caetano; Jf Garcia; Olivier Hanotte; Paola Mariani; Lc Skow; Ts Sonstegard; Jl Williams; B Diallo; L Hailemariam; Ml Martinez; Ca Morris; Lo Silva

A survey of genetic diversity of cattle suggests two domestication events in Asia and selection by husbandry. Not Just Dinner on Legs Several thousand years ago, human beings realized the virtues of domesticating wild animals as easy meat. Soon other possibilities became apparent, and as revealed in a series of papers in this issue, early pastoralists became selective about breeding for wool, leather, milk, and muscle power. In two papers, Gibbs et al. report on the bovine genome sequence (p. 522; see the cover, the Perspective by Lewin, and the Policy Forum by Roberts) and trace the diversity and genetic history of cattle (p. 528), while Chessa et al. (p. 532) survey the occurrence of endogenous retroviruses in sheep and map their distribution to historical waves of human selection and dispersal across Europe. Finally, Ludwig et al. (p. 485) note the origins of variation in the coat-color of horses and suggest that it is most likely to have been selected for by humans in need of good-looking transport. The imprints of domestication and breed development on the genomes of livestock likely differ from those of companion animals. A deep draft sequence assembly of shotgun reads from a single Hereford female and comparative sequences sampled from six additional breeds were used to develop probes to interrogate 37,470 single-nucleotide polymorphisms (SNPs) in 497 cattle from 19 geographically and biologically diverse breeds. These data show that cattle have undergone a rapid recent decrease in effective population size from a very large ancestral population, possibly due to bottlenecks associated with domestication, selection, and breed formation. Domestication and artificial selection appear to have left detectable signatures of selection within the cattle genome, yet the current levels of diversity within breeds are at least as great as exists within humans.


Nature Genetics | 2013

The high-quality draft genome of peach (Prunus persica) identifies unique patterns of genetic diversity, domestication and genome evolution

Ignazio Verde; A. G. Abbott; Simone Scalabrin; Sook Jung; Shengqiang Shu; Fabio Marroni; Tatyana Zhebentyayeva; Maria Teresa Dettori; Jane Grimwood; Federica Cattonaro; Andrea Zuccolo; Laura Rossini; Jerry Jenkins; Elisa Vendramin; Lee Meisel; Véronique Decroocq; Bryon Sosinski; Simon Prochnik; Therese Mitros; Alberto Policriti; Guido Cipriani; L. Dondini; Stephen P. Ficklin; David Goodstein; Pengfei Xuan; Cristian Del Fabbro; Valeria Aramini; Dario Copetti; Susana González; David S. Horner

Rosaceae is the most important fruit-producing clade, and its key commercially relevant genera (Fragaria, Rosa, Rubus and Prunus) show broadly diverse growth habits, fruit types and compact diploid genomes. Peach, a diploid Prunus species, is one of the best genetically characterized deciduous trees. Here we describe the high-quality genome sequence of peach obtained from a completely homozygous genotype. We obtained a complete chromosome-scale assembly using Sanger whole-genome shotgun methods. We predicted 27,852 protein-coding genes, as well as noncoding RNAs. We investigated the path of peach domestication through whole-genome resequencing of 14 Prunus accessions. The analyses suggest major genetic bottlenecks that have substantially shaped peach genome diversity. Furthermore, comparative analyses showed that peach has not undergone recent whole-genome duplication, and even though the ancestral triplicated blocks in peach are fragmentary compared to those in grape, all seven paleosets of paralogs from the putative paleoancestor are detectable.


Genetics | 2006

Genomic-Assisted Prediction of Genetic Value With Semiparametric Procedures

Daniel Gianola; Rohan L. Fernando; Alessandra Stella

Semiparametric procedures for prediction of total genetic value for quantitative traits, which make use of phenotypic and genomic data simultaneously, are presented. The methods focus on the treatment of massive information provided by, e.g., single-nucleotide polymorphisms. It is argued that standard parametric methods for quantitative genetic analysis cannot handle the multiplicity of potential interactions arising in models with, e.g., hundreds of thousands of markers, and that most of the assumptions required for an orthogonal decomposition of variance are violated in artificial and natural populations. This makes nonparametric procedures attractive. Kernel regression and reproducing kernel Hilbert spaces regression procedures are embedded into standard mixed-effects linear models, retaining additive genetic effects under multivariate normality for operational reasons. Inferential procedures are presented, and some extensions are suggested. An example is presented, illustrating the potential of the methodology. Implementations can be carried out after modification of standard software developed by animal breeders for likelihood-based or Bayesian analysis.


Journal of General Virology | 2008

Genome-wide transcriptional response of primary alveolar macrophages following infection with porcine reproductive and respiratory syndrome virus

Sem Genini; Peter Delputte; Roberto Malinverni; María C. Cecere; Alessandra Stella; Hans Nauwynck; Elisabetta Giuffra

Porcine reproductive and respiratory syndrome is a major cause of economic loss for the swine industry worldwide. Porcine reproductive and respiratory syndrome virus (PRRSV) triggers weak and atypical innate immune responses, but key genes and mechanisms by which the virus interferes with the host innate immunity have not yet been elucidated. In this study, genes that control the response of the main target of PRRSV, porcine alveolar macrophages (PAMs), were profiled in vitro with a time-course experiment spanning the first round of virus replication. PAMs were obtained from six piglets and challenged with the Lelystad PRRSV strain, and gene expression was investigated using Affymetrix microarrays and real-time PCR. Of the 1409 differentially expressed transcripts identified by analysis of variance, two, five, 25, 16 and 100 differed from controls by a minimum of 1.5-fold at 1, 3, 6, 9 and 12 h post-infection (p.i.), respectively. A PRRSV infection effect was detectable between 3 and 6 h p.i., and was characterized by a consistent downregulation of gene expression, followed by the start of the host innate immune response at 9 h p.i. The expression of beta interferon 1 (IFN-β), but not of IFN-α, was strongly upregulated, whilst few genes commonly expressed in response to viral infections and/or induced by interferons were found to be differentially expressed. A predominance of anti-apoptotic transcripts (e.g. interleukin-10), a shift towards a T-helper cell type 2 response and a weak upregulation of tumour necrosis factor-α expression were observed within 12 h p.i., reinforcing the hypotheses that PRRSV has developed sophisticated mechanisms to escape the host defence.


Genetics | 2010

Identification of Selection Signatures in Cattle Breeds Selected for Dairy Production

Alessandra Stella; Paolo Ajmone-Marsan; Barbara Lazzari; Paul J. Boettcher

The genomics revolution has spurred the undertaking of HapMap studies of numerous species, allowing for population genomics to increase the understanding of how selection has created genetic differences between subspecies populations. The objectives of this study were to (1) develop an approach to detect signatures of selection in subsets of phenotypically similar breeds of livestock by comparing single nucleotide polymorphism (SNP) diversity between the subset and a larger population, (2) verify this method in breeds selected for simply inherited traits, and (3) apply this method to the dairy breeds in the International Bovine HapMap (IBHM) study. The data consisted of genotypes for 32,689 SNPs of 497 animals from 19 breeds. For a given subset of breeds, the test statistic was the parametric composite log likelihood (CLL) of the differences in allelic frequencies between the subset and the IBHM for a sliding window of SNPs. The null distribution was obtained by calculating CLL for 50,000 random subsets (per chromosome) of individuals. The validity of this approach was confirmed by obtaining extremely large CLLs at the sites of causative variation for polled (BTA1) and black-coat-color (BTA18) phenotypes. Across the 30 bovine chromosomes, 699 putative selection signatures were detected. The largest CLL was on BTA6 and corresponded to KIT, which is responsible for the piebald phenotype present in four of the five dairy breeds. Potassium channel-related genes were at the site of the largest CLL on three chromosomes (BTA14, -16, and -25) whereas integrins (BTA18 and -19) and serine/arginine rich splicing factors (BTA20 and -23) each had the largest CLL on two chromosomes. On the basis of the results of this study, the application of population genomics to farm animals seems quite promising. Comparisons between breed groups have the potential to identify genomic regions influencing complex traits with no need for complex equipment and the collection of extensive phenotypic records and can contribute to the identification of candidate genes and to the understanding of the biological mechanisms controlling complex traits.


PLOS ONE | 2010

Genetic Loci Involved in Antibody Response to Mycobacterium avium ssp. paratuberculosis in Cattle

Giulietta Minozzi; Laura Buggiotti; Alessandra Stella; Francesco Strozzi; Mario Luini; John L. Williams

Background Mycobacterium avium subsp. paratuberculosis (MAP) causes chronic enteritis in a wide range of animal species. In cattle, MAP causes a chronic disease called Johnes disease, or paratuberculosis, that is not treatable and the efficacy of vaccine control is controversial. The clinical phase of the disease is characterised by diarrhoea, weight loss, drop in milk production and eventually death. Susceptibility to MAP infection is heritable with heritability estimates ranging from 0.06 to 0.10. There have been several studies over the last few years that have identified genetic loci putatively associated with MAP susceptibility, however, with the availability of genome-wide high density SNP maker panels it is now possible to carry out association studies that have higher precision. Methodology/Principal Findings The objective of the current study was to localize genes having an impact on Johnes disease susceptibility using the latest bovine genome information and a high density SNP panel (Illumina BovineSNP50 BeadChip) to perform a case/control, genome-wide association analysis. Samples from MAP case and negative controls were selected from field samples collected in 2007 and 2008 in the province of Lombardy, Italy. Cases were defined as animals serologically positive for MAP by ELISA. In total 966 samples were genotyped: 483 MAP ELISA positive and 483 ELISA negative. Samples were selected randomly among those collected from 119 farms which had at least one positive animal. Conclusion/Significance The analysis of the genotype data identified several chromosomal regions associated with disease status: a region on chromosome 12 with high significance (P<5×10−6), while regions on chromosome 9, 11, and 12 had moderate significance (P<5×10−5). These results provide evidence for genetic loci involved in the humoral response to MAP. Knowledge of genetic variations related to susceptibility will facilitate the incorporation of this information into breeding programmes for the improvement of health status.


Theoretical and Applied Genetics | 2009

Genetic Variants of HvCbf14 are Statistically Associated with Frost Tolerance in a European Germplasm Collection of Hordeum vulgare

Agostino Fricano; Fulvia Rizza; Primetta Faccioli; Donata Pagani; Paolo Pavan; Alessandra Stella; Laura Rossini; Pietro Piffanelli; Luigi Cattivelli

Two quantitative trait loci (Fr-H1 and Fr-H2) for frost tolerance (FT) have been discovered on the long arm of chromosome 5H in barley. Two tightly linked groups of CBF genes, known to play a key role in the FT regulatory network in A. thaliana, have been found to co-segregate with Fr-H2. Here, we investigate the allelic variations of four barley CBF genes (HvCbf3, HvCbf6, HvCbf9 and HvCbf14) in a panel of European cultivars, landraces and H. spontaneum accessions. In the cultivars a reduction of nucleotide and haplotype diversities in CBFs compared with the landraces and the wild ancestor H. spontaneum, was evident. In particular, in cultivars the loss of HvCbf9 genetic variants was higher compared to other sequences. In order to verify if the pattern of CBF genetic variants correlated with the level of FT, an association procedure was adopted. The pairwise analysis of linkage disequilibrium (LD) among the genetic variants in four CBF genes was computed to evaluate the resolution of the association procedure. The pairwise plotting revealed a low level of LD in cultivated varieties, despite the tight physical linkage of CBF genes analysed. A structured association procedure based on a general liner model was implemented, including the variants in CBFs, of Vrn-H1, and of two reference genes not involved in FT (α-Amy1 and Gapdh) and considering the phenotypic data for FT. Association analysis recovered two nucleotide variants of HvCbf14 and one nucleotide variant of Vrn-H1 as statistically associated to FT.


PLOS ONE | 2013

Genome Wide Analysis of Fertility and Production Traits in Italian Holstein Cattle

Giulietta Minozzi; Ezequiel L. Nicolazzi; Alessandra Stella; Stefano Biffani; Riccardo Negrini; Barbara Lazzari; Paolo Ajmone-Marsan; John L. Williams

A genome wide scan was performed on a total of 2093 Italian Holstein proven bulls genotyped with 50K single nucleotide polymorphisms (SNPs), with the objective of identifying loci associated with fertility related traits and to test their effects on milk production traits. The analysis was carried out using estimated breeding values for the aggregate fertility index and for each trait contributing to the index: angularity, calving interval, non-return rate at 56 days, days to first service, and 305 day first parity lactation. In addition, two production traits not included in the aggregate fertility index were analysed: fat yield and protein yield. Analyses were carried out using all SNPs treated separately, further the most significant marker on BTA14 associated to milk quality located in the DGAT1 region was treated as fixed effect. Genome wide association analysis identified 61 significant SNPs and 75 significant marker-trait associations. Eight additional SNP associations were detected when SNP located near DGAT1 was included as a fixed effect. As there were no obvious common SNPs between the traits analyzed independently in this study, a network analysis was carried out to identify unforeseen relationships that may link production and fertility traits.


Virology | 2008

Susceptibility of different chicken lines to H7N1 highly pathogenic avian influenza virus and the role of Mx gene polymorphism coding amino acid position 631

Laura Sironi; John L. Williams; Ana M. Moreno-Martin; Paola Ramelli; Alessandra Stella; Han Jianlin; Steffen Weigend; Guerino Lombardi; Paolo Cordioli; Paola Mariani

Five chicken lines were experimentally infected with a HPAI H7N1 virus, to examine the variation in susceptibility to infection. Three lines showed high susceptibility to the virus, while two showed some resistance, with 7 out of 20, and 11 out of 15 birds, respectively, remaining healthy and surviving the experimental infection. Genotyping for the G/A polymorphism at position 2032 of Mx cDNA showed that one line was fixed for the G allele, and two were segregating for A and G alleles. Birds in the other two lines were selected to be fixed for the A allele. Statistical analyses indicated that the Mx genotype did not affect the clinical status or the time course of infection after viral inoculation.


BMC Bioinformatics | 2005

ESTree db: a Tool for Peach Functional Genomics

Barbara Lazzari; Andrea Caprera; Alberto Vecchietti; Alessandra Stella; Luciano Milanesi; Carlo Pozzi

BackgroundThe ESTree db http://www.itb.cnr.it/estree/ represents a collection of Prunus persica expressed sequenced tags (ESTs) and is intended as a resource for peach functional genomics. A total of 6,155 successful EST sequences were obtained from four in-house prepared cDNA libraries from Prunus persica mesocarps at different developmental stages. Another 12,475 peach EST sequences were downloaded from public databases and added to the ESTree db. An automated pipeline was prepared to process EST sequences using public software integrated by in-house developed Perl scripts and data were collected in a MySQL database. A php-based web interface was developed to query the database.ResultsThe ESTree db version as of April 2005 encompasses 18,630 sequences representing eight libraries. Contig assembly was performed with CAP3. Putative single nucleotide polymorphism (SNP) detection was performed with the AutoSNP program and a search engine was implemented to retrieve results. All the sequences and all the contig consensus sequences were annotated both with blastx against the GenBank nr db and with GOblet against the viridiplantae section of the Gene Ontology db. Links to NiceZyme (Expasy) and to the KEGG metabolic pathways were provided. A local BLAST utility is available. A text search utility allows querying and browsing the database. Statistics were provided on Gene Ontology occurrences to assign sequences to Gene Ontology categories.ConclusionThe resulting database is a comprehensive resource of data and links related to peach EST sequences. The Sequence Report and Contig Report pages work as the web interface core structures, giving quick access to data related to each sequence/contig.

Collaboration


Dive into the Alessandra Stella's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Paolo Ajmone-Marsan

Catholic University of the Sacred Heart

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrea Caprera

Parco Tecnologico Padano

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Licia Colli

Catholic University of the Sacred Heart

View shared research outputs
Top Co-Authors

Avatar

Marcello Del Corvo

Catholic University of the Sacred Heart

View shared research outputs
Researchain Logo
Decentralizing Knowledge